Intégration de films épitaxiés de CoFe2O4 ferrimagnétiques sur silicium
Institution:
Toulouse 3Disciplines:
Directors:
Abstract EN:
The integration of ferromagnetic and electrically insulating at room temperature CoFe2O4 thin films with silicon could be used as tunnel barrier in a spin filter device as an alternative to the injection using ferromagnetic electrodes and passive tunnel barriers. The thermodynamical instability between CoFe2O4 and Si imposes the use of a buffer layer for its epitaxial integration. The challenging goal is therefore fabricating ultrathin epitaxial CoFe2O4/buffer bilayers on silicon in order to preserve ferromagnetism and allow the tunnel transport. The followed strategy was based on investigating in parallel several buffer candidates to grow CoFe2O4 by pulsed laser deposition (PLD). We have used thick SrTiO3 buffers fabricated by collaborators at INL-Lyon, which is epitaxial and ferromagnetic. However, there is diffusion of Ti into CoFe2O4 and the SrTiO3/Si(001) interface could be unstable. The epitaxial growth mechanism of yttria-stabilized-zirconia (YSZ) was investigated to determine the limits reducing the YSZ thickness and the interfacial layer by reflection high energy electron diffraction (RHEED) assisted PLD. The total thickness of CFO/YSZ/SiOx is excessive for a tunnel device. Sc2O3 and Y2O3 buffers on Si(111), provided by collaborators at IHP-Frankfurt Oder presents a huge lattice mismatch with CoFe2O4, but allows it epitaxial growth by domain matching epitaxy with a magnetization close to the bulk value. The absence of interfacial SiOx layer in the CoFe2O4/Y2O3/Si(111) sample indicates that Y2O3 is a very promising buffer layer and maybe convenient for the nanometric structure required in a spin filter.
Abstract FR:
L'intégration de couches minces de CoFe2O4, ferromagnétique et isolant électrique à température ambiante, sur silicium pourrait être utilisée en tant que barrière tunnel dans un dispositif de filtre à spin, comme alternative à l'injection utilisant des électrodes ferromagnétiques et des barrières tunnel passives. L'instabilité thermodynamique entre CoFe2O4 et Si impose l'utilisation d'une couche tampon pour son intégration. L'exigeant défi est donc de fabriquer des bicouches épitaxiées et ultrafines afin de préserver le ferromagnétisme et le transport par effet tunnel. Nous avons adopté une stratégie de recherche en parallèle considérant différents candidats pour la couche tampon pour déposer des couches de CoFe2O4 par dépôt par laser pulsé (PLD). Nous avons utilisé des couches tampon de SrTiO3 épitaxiées sur Si(001) fabriquées par des collaborateurs de l'INL-Lyon. Une diffusion de Ti dans CoFe2O4, et une possible instabilité de l'interface SrTiO3/Si(001) ont été décelés. L'étude des mécanismes de croissance épitaxiale de l'yttrium stabilisé avec de la zircone (YSZ) sur Si(001) a permis de déterminer les limites de réduction d'épaisseur d'YSZ et de la couche interfaciale de SiOx par PLD monitorisé par RHEED. L'épaisseur de CFO/YSZ/SiOx résultante est excessive pour un dispositif de filtre à spin. Les buffers de Sc2O3 et Y2O3 sur Si(111), fournis par des collaborateurs de l'IHP-Frankfurt Oder présentent un grand désaccord paramétrique avec CoFe2O4, mais permettent sa croissance épitaxiale par domaines avec une magnétisation proche de celle du matériau massif. Y2O3 étant stable avec Si est très prometteurs pour la structure de filtre à spin.