Réparation de pièces métalliques par Directed Energy Deposition : gradient microstructural, comportement mécanique et tenue en fatigue
Institution:
Institut polytechnique de ParisDisciplines:
Directors:
Abstract EN:
Directed Energy Deposition (DED) process is a powder-jet additive manufacturing process involving a nozzle composed of coaxial laser beam and powder stream. The laser generates a melt pool in which the powder is projected, it melts and then solidifies creating a deposit as the nozzle moves. However, this process is particularly appealing to repair valuable metallic components. The small spot size and fast motions of the laser causes strong thermal gradient and important cooling rates and this specific thermal evolution is responsible for the formation of microstructures different from traditional processes like forge or foundry. Consequently, the repaired components exhibits an interface between the base material (generally wrought) and the region reconstructed with DED. This microstructural gradient leads to a mechanical gradient and therefore to localization phenomena which can affect the lifetime of repaired components. This thesis proposes a method to characterize the interface region of repaired components. A semi-analytic tool has been developed to model the thermal evolution during the repair process in order to design representative specimens, in terms of geometry but also in terms of thermal history. The microstructural gradient through the interface is first characterized with a SEM and EBSD analyses. Tensile specimen are then taken in the interface region and loaded during SEM in-situ tests. The strain is followed at the micrometric scale with Digital Image Correlation, what provides the information regarding localization phenomena. Those experimental data are then injected into a numerical method to identify the local parameters of the mechanical behavior by minimizing the error between the experimental and numerical fields. Using this mechanical gradient, the stress in fatigue specimens is derived. A fatigue limit is then derived from the experimental results of the fatigue tests and it is compared to the endurance of the original part to estimate the reduction of resistance caused by the repair.
Abstract FR:
Le Directed Energy Deposition (DED) est un procédé de fabrication additive utilisant une buse constituée d’un faisceau laser et d’un jet de poudre coaxiaux. Le laser crée un bain liquide dans lequel la poudre est projetée, elle fond puis se solidifie formant un cordon de matière lorsque la buse se déplace. Ce procédé présente en particulier un fort potentiel pour réparer des pièces métalliques à haute valeur ajoutée. Néanmoins, le faible diamètre et les mouvements rapides du faisceau laser entraînent des gradients thermiques et des vitesses de refroidissement élevés et cette évolution thermique spécifique est responsable de la formation de microstructures différentes de celles des composants traditionnels mis en forme par forge ou fonderie. Ainsi, les composants réparés présentent une interface qui sépare le matériau de base (souvent forgé) et la région reconstruite par DED. Ce gradient microstructural conduit à un gradient de propriété et donc à des phénomènes de localisation qui affectent la durée de vie des composants réparés. Cette thèse propose une méthode de caractérisation de la zone d'interface des composants réparés. Un outil semi-analytique de modélisation des champs de température pendant le procédé de rechargement a été mis au point pour concevoir des éprouvettes représentatives géométriquement et thermiquement de la réparation sur la pièce réelle. Le gradient de microstructure à travers l'interface est d'abord caractérisé par imagerie MEB et par analyse EBSD. Des éprouvettes de traction sont ensuite prélevées à l'interface et sollicitées lors d’essais conduits sous MEB. La déformation est suivie à l'échelle micrométrique par corrélation d'images, ce qui permet d'étudier les phénomènes de localisation. Par la suite, ces cartes expérimentales sont utilisées pour identifier le comportement local du matériau dans la région de l’interface, en minimisant l’erreur entre les champs de déformation expérimental et numérique. Le gradient de propriété ainsi déterminé permet de calculer la répartition de contraintes dans des éprouvettes soumises à des essais de fatigue. La limite d'endurance des structures réparées est ensuite calculée à partir des résultats expérimentaux d'une campagne de fatigue et comparée à celle de la pièce d'origine pour déterminer l'abattement causé par le rechargement.