thesis

Dynamic behaviour of cylindrical roller bearing working in a centrifugal field for planetary gearbox applications

Defense date:

Nov. 15, 2019

Edit

Institution:

Lyon

Disciplines:

Authors:

Abstract EN:

With the constant aim of reducing the turbofan consumption, aircraft manufacturers try to reach higher efficiency by increasing the compressor-turbine speed. In order to limit the fan speed, a planetary gearbox is introduced between the fan and the compressor. Because of their good oil-off performance, roller bearings are often preferred over hydrodynamic bearings for aircraft applications. However, in the case of planetary gearboxes, the roller bearings are submitted to severe centrifugal forces which cause significant power losses and premature cage fatigue that may lead to overall bearing failure. The present work consists in the development of a numerical model for the understanding of the dynamic behaviour of a cylindrical roller bearing working in a centrifugal field. Multi-body dynamics is used, coupled with semi-analytical contact models accounting for the different lubrication regimes encountered in the bearing. In addition, a finite element model is developed to account for the outer ring flexibility that may affect the bearing dynamics. Results are presented for a typical planetary gearbox application in terms of force, speed and power losses. Severe roller/cage impacts are observed and the mechanisms that cause the high power losses and the cage fatigue are explained. The influence of the main model hypothesis is presented. Finally, a study of the influence of the different parameters on the force amplitude and the bearing loaded zone shape and position is performed.

Abstract FR:

Dans un objectif permanent de réduction de consommation des turboréacteurs, les constructeurs aéronautiques souhaitent atteindre de meilleurs rendements en augmentant la vitesse de l'ensemble compresseur-turbine. Afin de limiter la vitesse de la soufflante, un étage de réduction épicycloïdal doit être inséré entre la soufflante et le compresseur. Du fait de leur bonne tenue en cas de défaillance du circuit de lubrification, les roulements sont souvent privilégiés aux paliers hydrodynamiques pour les applications aéronautiques. Cependant, dans le cas des trains épicycloïdal, les roulements sont soumis à des forces centrifuges importantes qui sont la cause de pertes de puissances significatives ainsi que de la fatigue prématurée des cages ce qui peut provoquer la destruction du roulement. Ce travail de thèse consiste en le développement d'un modèle numérique permettant de comprendre le comportement dynamique d'un roulement à rouleaux cylindriques fonctionnant en champ centrifuge. Pour cela, la méthode de dynamique multi-corps est utilisée, couplée à des modèles de contact semi-analytiques tenant compte des différents régimes de lubrification rencontrés dans le roulement. De plus, un modèle élément finis est développé pour prendre en compte la flexibilité de la bague extérieure qui peut affecter la dynamique du roulement. Les résultats sont présentés pour une application classique de train épicycloïdal en termes de force, vitesse et perte de puissance. De forts impacts entre les rouleaux et la cage sont observés et les mécanismes responsables des importantes pertes de puissances et de la fatigue de cage sont expliqués. L'influence des hypothèses principales de modélisation est présentée. Enfin, une étude de l'influence des différents paramètres sur l'amplitude des forces et sur la taille et la position de la zone de chargement du roulement est réalisée.