A molecular dynamics approach to nano-scale lubrication
Institution:
Lyon, INSADisciplines:
Directors:
Abstract EN:
A Molecular Dynamics Approach to Nano-scale Lubrication Abstract A numerical approach based on Molecular Dynamics simulations was developed in the purpose of investigating the local mechanisms of lubrication at nano-scales. The model ele-ments were introduced and characterized in order to yield the most realistic material and inter-facial properties of the contact. Due to their tight relationship with friction at the nanometre scale, the energetic dissipation methods used in molecular dynamics were revisited and guide-lines were set for choosing a correct dissipation method for a variety of operating conditions. Moreover, a novel method combining physical relevance and simplicity was introduced for studying heat dissipation in the high-shear regime. The model was then employed to investigate the effects related to the molecular structure of the surfaces and that of the confined lubricant. On one hand, for studying different tribologi-cal surfaces, an original method was used to quantitatively measure the physical adsorption and corrugation potentials. These properties directly influence the structuring and boundary flow in confined films. On the other hand, the influence of lubricant molecular shape and mole-cular mixing on the tribological performance was investigated for both wetting and non-wetting surfaces. The simulations allowed local analysis of lubricated friction to be performed from the molecular scale and thus a better understanding of the physical interaction between the involved elements.
Abstract FR:
Une approche numérique basée sur des simulations Dynamique Moléculaire a été développée dans le but d'étudier les mécanismes locaux de la lubrification à l'échelle nanométrique. Les éléments du modèle ont été présentés et caractérisés afin de reproduire les propriétés les plus réalistes des matériaux et de l'interface du contact. En raison de leur relation étroite avec le frottement, les méthodes de dissipation énergétique pour la dynamique moléculaire ont été revisitées et des recommandations ont été proposées pour le choix d'une méthode correcte adaptée aux différentes conditions opératoires. Pour le régime de fort cisaillement et donc de forte dissipation, une nouvelle méthode mieux fondée physiquement a été développée, combinant simplicité et vitesse de calcul. Le modèle a ensuite été utilisé pour étudier les effets liés à la structure moléculaire des surfaces et du lubrifiant confiné. Afin d'étudier différentes surfaces tribologiques, une méthode originale a été utilisée pour mesurer quantitativement les potentiels physiques d'adsorption et de corrugation. Ces propriétés influencent directement la stratification dans le film et son glissement à l'interface solide. D'autre part, l'influence de la forme moléculaire du lubrifiant sur sa performance tribologique a été étudiée, en solution pure et en mélange, pour les surfaces mouillantes et non-mouillantes. Les simulations moléculaires ont permis une analyse locale du frottement lubrifié à l'échelle moléculaire et ainsi une meilleure compréhension des interactions physiques entre les éléments mis en jeu.