Modélisation numérique de l'agitation et du mélange dans les écoulements à bulles. Application aux phénomènes de convection dans un bain de corium
Institution:
Toulouse, INPTDisciplines:
Directors:
Abstract EN:
Bubbly flows belong to the family of multiphase flows in which particles, whether solid, liquidor gaseous, are dispersed in a carrier fluid. This type of flow is very common and can be found inmany industrial processes (bubble columns, extraction columns, fluidized beds, decanters) and natural processes (breaking waves, volcanic plumes). In particular, the presence of bubbles plays a major role in nuclear core meltdown accidents by influencing the dynamics of the corium bath.This presence in a wide variety of fields has led to the significant development of experimental and numerical methods to study this type of flow. In this study, we are interested in the flow induced by the rise of a swarm of millimetre-sizedbubbles (with a Reynolds number of several hundred) in a liquid. In this situation, interactions between the wakes play a major role leading to turbulent agitation with original characteristics. One of the most striking is the existence of a singular spectral regime where the energy of the fluctuations in the liquid velocity evolves in power -3 of the wave number. Fundamentally, we are in-terested in understanding the interscale turbulent transfer mechanisms in order to model mixing and transfer processes in applications. For this purpose we propose to simulate the flow by coupling an Eulerian description of the carrier phase to a Lagrangian method for the bubbles. In our numerical approach, the action of each bubble on the liquid is modelled by a volume source of momentum distributed over a few mesh elements. The smallest scales of the flow (i.e. scales much smaller than the bubble diameter) are not finely resolved. This choice to focus on the large scales of the flow allows us to simulate large volume fractions with a large number of bubbles with reasonable computing resources. To calculate the trajectory of the bubbles, we use the hydrodynamic forces that the liquid exerts on each of them. This requires us to determine the perturbation that a bubble creates in its vicinity in order to cancel the force that the bubble artificially exerts on itself. We have developed a model to determine this perturbation allowing us to accurately calculate the drag and added-mass forces. Using this method, we simulated the agitation induced by the rise of a homogeneous swarm of bubbles and obtained results in good agreement with the experiment. Once validated, these simulations allow us to study the budget between production, dissipation and inter-scale transfer in the spectral domain to analyze the mechanisms of bubble-induced turbulence. For risk prevention purposes, the numerical model is then applied to the simulation of a corium bath produced during a core meltdown accident in a nuclear power plant. The dynamics of concrete ablation is directly related to the distribution of heat fluxes to the walls, which mainly involve turbulent convection phenomena of thermal origin and those induced by bubbles.
Abstract FR:
Les écoulements à bulles font partie de la famille des écoulements polyphasiques dans lesquels des particules, solides, liquides ou gazeuses, sont dispersées dans un fluide porteur. Ce type d’écoulements est très courant, on le retrouve dans nombreux procédés industriels (colonnes à bulles, colonnes d’extraction, lits fluidisés, décanteurs) et naturels (vagues déferlantes, panaches volcaniques). La présence des bulles joue notamment un rôle majeur dans les accidents nucléaires de fusion du coeur en influençant la dynamique du bain de corium. Cette présence dans des do-maines très variés a favorisé un développement important de méthodes expérimentales et numériques pour étudier ce type d’écoulements. Dans cette étude, nous nous intéressons à l’écoulement induit par l’ascension d’un essaim de bulles millimétriques (dont le nombre de Reynolds est de plusieurs centaines) dans un liquide. Dans cette situation, les interactions entre les sillages jouent un rôle majeur conduisant à une agitation turbulente aux caractéristiques originales. L’une des plus frappantes est l’existence d’un régime spectral singulier où l’énergie des fluctuations des vitesse du liquide évolue en puissance -3 du nombre d’onde. Fondamentalement, nous souhaitons comprendre les mécanismes de transfert turbulent interéchelle afin de modéliser les processus de mélange et de transfert dans les applications. Pour cela nous proposons de simuler l’écoulement en couplant une description eulérienne de la phase porteuse à une méthode Lagrangienne pour le suivi des bulles. Dans notre approche numérique, l’action de chaque bulle sur le liquide est modélisée par une source volumique de quantité de mouvement répartie sur quelques éléments de maillage. Les plus petites échelles de l’écoulement (c’est-à-dire des échelles beaucoup plus petites que le diamètre des bulles) ne sont pas finement résolues. Ce choix de nous concentrer sur les grandes échelles de l’écoulement nous permet de simuler des fractions volumiques conséquentes avec un grand nombre de bulles avec une puissance de calcul raisonnable. Pour calculer la trajectoire des bulles, nous utilisons les forces hydrodynamiques que le liquide exerce sur chacune d’elles. Ceci nécessite de déterminer la perturbation qu’une bulle crée dans son voisinage afin d’annuler la force que la bulle exerce artificiellement sur elle-même. Nous avons établi un modèle pour déterminer cette perturbation nous permettant ainsi de calculer de façon précise les forces de traînée et de masse ajoutée. Grâce à cette méthode, nous avons simulé l’agitation induite par l’ascension d’un essaim de bulles homogène et obtenu des résultats en bon accord avec l’expérience. Une fois validées, ces simulations permettent d’étudier le bilan entre production, dissipation et transfert inter-échelle dans le plan spectral pour analyser les mécanismes de la turbulence induite par les bulles. Dans un but de prévention des risques, le modèle numérique est ensuite appliqué à la simulation d’un bain de corium produit lors d’un accident de fusion du cœur d’une centrale nucléaire. La dynamique d’ablation du béton est directement liée à la répartition des flux de chaleur aux parois qui mettent principalement en jeu les phénomènes de convection turbulente d’origine thermique et ceux induits par les bulles.