thesis

Prédiction de la génération des pertes des écoulements compressibles anisothermes appliquée aux distributeurs hautes pressions de turbine avec les simulations aux grandes échelles

Defense date:

Jan. 20, 2020

Edit

Institution:

Toulouse, INPT

Disciplines:

Authors:

Abstract EN:

To improve the efficiency of aeronautic engines, the turbine entry temperature has strongly increased in recent years. Such high temperatures induce high thermal stresses for the turbine blades and vanes which reduces the blade lifetime. To overcome this thermal issue, efficient turbine cooling systems need to be designed. To do so, the accurate prediction of blade wall temperature and losses generated by these systems is required. Taking the opportunity of recent developments of high-fidelity predictions, this PhD thesis funded through the FUI project CASCADE with the support of Safran Helicopter Engines (SHE), aims to evaluate the prediction of blade wall temperature and losses for cooled high-pressure vanes with Large Eddy Simulations (LES). To do so, academic and complex anisothermal configurations featuring film cooling are investigated. Results obtained in the present work show that LES is able to predict the flow aerodynamics and blade wall temperature for all configurations studied. The prediction is clearly improved if the mesh is sufficiently refined in high dynamic regions and if turbulent fluctuations are taken into account at the inlet of the computational domain especially for cases presenting separation bubbles. To ease the use of LES in an industrial context and reduce the CPU effort associated to the resolution of the flow in the cooling system of turbine blades and vanes, a new coolant ejection model is introduced and evaluated. This model is shown to well reproduce the coolant jets aerodynamics and provides a good prediction of the wall temperature without meshing the cooling system. To accurately evaluate and investigate the losses in this context of turbine blade cooling, the approach Second Law Analysis (SLA) is adopted. Contrary to total temperature and total pressure balances, SLA directly gives access to 3D loss maps which are constructed from the entropy source terms resolved on mesh. As a result, the loss generation mechanism can be locally investigated and does not require any averaging procedures contrary to 1D loss models. These loss maps are split in an aerodynamic contribution and a mixing contribution which is linked to mixing process between hot and cold flows. The study of these loss maps shows that aerodynamics losses are generated in high sheared regions (boundary and mixing layers) while mixing losses are produced in the film cooling and in the wake of the vanes. Advanced analysis of loss maps indicate that turbulent fluctuations dominate the loss generation mechanism. This last finding evidences the benefits of SLA to predict losses from LES fields. Indeed and contrary to RANS, the turbulent contributions to losses are directly resolved on mesh with LES and do not require any modelling strategies. As a consequence of this PhD work, SLA coupled to LES is shown to be a very promising methodology to predict the flow aerodynamics and losses for the design of future geometries of industrial turbine vanes and blades.

Abstract FR:

Afin d'améliorer l'efficacité des moteurs aéronautiques, une des solutions envisagées par les industriels est d'augmenter la température d'entrée de la turbine. Cependant, ces hautes températures induisent de fortes contraintes thermiques sur les pales de turbine ce qui réduit leur durée de vie. Pour surmonter ces problèmes thermiques, des systèmes de refroidissement efficaces sont nécessaires. Afin d'évaluer la performance de ces systèmes, une prédiction précise de la température de paroi des pales de turbine et des pertes générées par ces systèmes est requise. Profitant de l'opportunité de récents développements d'outils de prédiction haute-fidélité, cette thèse financée par Safran Helicopter Engines à travers le projet FUI CASCADE, a pour but de valider la prédiction de la température de paroi des pales de turbine refroidie et des pertes générées par ces systèmes avec la Simulation aux Grandes Echelles (SGE). Pour atteindre ces objectifs, différentes configurations académiques et industrielles refroidies par film de refroidissement ont été simulées et étudiées. Les résultats obtenus dans cette thèse montrent que la SGE est capable de prédire l'aérodynamique et l'environnement thermique pour de tels systèmes. Pour faciliter l'utilisation de la SGE dans l’industrie et limiter le coût CPU lié à la résolution de l'écoulement dans le système de refroidissement des pales, un modèle de jets de refroidissement a été proposé et évalué dans ce travail. Les résultats montrent que ce modèle permet de reproduire l'aérodynamique des jets de refroidissement et la température de paroi des pales sans mailler le système de refroidissement. Pour évaluer les pertes dans ce contexte, l’approche Second Law Analysis (SLA) est adoptée. Contrairement aux bilans de température et pression totales, cette approche donne directement accès aux champs de perte 3D qui sont construits à partir des termes sources de l’entropie résolus sur le maillage. Ainsi, le mécanisme de génération de perte peut être localement étudié et ne requière pas de procédure de moyenne contrairement aux modèles de perte 1D. Ces champs de perte sont décomposés en deux contributions : une contribution aérodynamique et une contribution thermique liée au mélange chaud-froid. L'étude de ces champs montre que les pertes aérodynamiques sont principalement générées dans les régions de fort cisaillement (couche limite et de mélange) alors que les pertes de mélange sont générées dans les films de refroidissement et dans le sillage des pales. Des analyses avancées des champs de perte mettent en évidence que les fluctuations turbulentes dominent la génération des pertes pour ces systèmes. Ce dernier résultat met en évidence les bénéfices de l'approche Second Law Analysis pour prédire les pertes à partir des champs obtenus avec la SGE. En effet et contrairement aux approches RANS, les contributions turbulentes des pertes sont directement résolues sur le maillage avec la SGE et ne requiert aucune stratégie de modélisation. La principale conclusion de cette thèse est que l'approche Second Law Analysis couplée avec la SGE est une méthodologie très prometteuse et pertinente pour la prédiction des écoulements et des pertes pour les futurs designs de pale de turbine industriel.