thesis

Modélisation de l'écoulement sanguin et du transport de molécules dans la microcirculation sanguine cérébrale : impact des occlusions capillaires dans la maladie d'Alzheimer

Defense date:

June 19, 2019

Edit

Institution:

Toulouse, INPT

Disciplines:

Authors:

Abstract EN:

The cerebral microvascular system is central in the remarkable machinery of the brain. It is responsible for the delivery of vital molecules (e.g. oxygen, glucose) and clearance of metabolic wastes (e.g.carbone dioxide, amyloid) to and from brain cells. Such a system is composed of small vessels (i.e. arterioles, venules and capillaries), embedded in brain tissue, which form a very large and intricate network spanning over the whole brain. Due to its critical role in brain homeostasis, the cerebral microvascular system is also involved in various pathologies, ranging from stroke toneurodegenerative diseases. During the last decades, significant advances in imaging techniques have been made, such asmulti-photon microscopy, that enabled the observation of the cerebral microvascular system with anunprecedented level of accuracy. However, these techniques generate large amounts of data that aredifficult to interpret without a proper theoretical framework. In this thesis, we address this need bybuilding computationally efficient models that accurately describe blood flow and solute transport in the cerebral microvascular system, more specifically in large anatomical networks.The biggest challenge in the resolution of blood flow and solute transport problems dwells inthe scale of such anatomical networks. Indeed, even though they represent only a fraction of thecomplete cerebral microvascular system, they are made of tens of thousand of vessels and exhibithighly complex geometries. Consequently, this prohibits the resolution of the blood flow and solutetransport problems by means of classic numerical methods, e.g. finite volume or finite elements. Toget around this computational issue, we combine a pore network approach to upscaling methods(volume averaging and multiscale asymptotics) and Green’s functions to simplify the formulation ofboth blood flow and solute transport problems while still capturing the underlying physics. In orderto assess the relevance of such simplifications we systematically validate our models against in vitroand in-vivo measurements, and against reference analytical solutions otherwise. We then use our models to investigate the role of the cerebral microvascular system during theonset of Alzheimer’s disease. Indeed, it has been recently shown that a significant decrease in the cerebral blood flow is the earliest biophysical marker of the disease. Coincidently, our collaborators,Professors Schaffer and Nishimura from Cornell University, have observed in Alzheimer’s diseasedmice that a small proportion (2% to 4%) of capillaries were abnormally occluded by white blood cells adhering to the inflammatory vessel walls. They subsequently injected antibodies inhibiting the whiteblood cells adhesion. This resulted in the unclogging of the capillary vessels, causing a substantialincrease in cerebral blood flow and ultimately leading to a significant cognitive improvement of thediseased animals. Assuming that such antibody injections restored the cerebral blood flow to itsbaseline value leads to estimate that capillary occlusions were previously reducing the cerebral blood flow by 20% to 30%. This raises the critical question: can 2% to 4% of capillary occlusions cause up to 30% reductionin cerebral blood flow? This question is challenging to answer only using experiments since it istremendously difficult to isolate the contribution of such a biophysical process in vivo in mice or humans. Instead, we use our models to numerically investigate the impact of such capillaryocclusions on cerebral blood flow. We find that 2% to 4% capillary occlusion cause up to 12% cerebral blood reduction making them a significant mechanism in the onset of Alzheimer’s disease. Finally,we go on to investigate the consequences of such occlusions on molecule exchange

Abstract FR:

Le système microvasculaire est un acteur essentiel du fonctionnement cérébral. Il est en effet responsable de l’approvisionnement des cellules en oxygène et glucose ainsi que de l’évacuation des déchets métaboliques comme le dioxyde de carbone. Ce système est composé d’une multitude de petit vaisseaux appelés artérioles, veinules et capillaires, qui sont entourés de tissu cérébral. Ces vaisseaux forment un immense réseau qui étend ses ramifications à travers tout le cerveau. A cause de son rôle prépondérant dans l’homéostasie cérébrale le système microvasculaire est impliqué dansde nombreuses pathologies, allant de l’accident vasculaire cérébral aux maladies neurodégénératives. Ces dernières décennies ont été marquées par des avancées significatives dans le domaine de l’imagerie du vivant (e.g. la microscopie multi-photonique) qui ont permis l’observation du système microvasculaire cérébral avec un niveau de précision sans précédent. Ces techniques génèrent cependant de grandes quantités de données qu’il est difficile d’analyser sans outils théoriques adaptés. C’est pourquoi, dans cette thèse, nous développons des modèles capables de décrire l’écoulement sanguin ainsi que le transport de soluté au sein de vastes réseaux microvasculaires anatomiques. La principale difficulté dans la résolution de tels problèmes, vient de la taille de ces réseaux. En effet, même s’ils ne représentent qu’une fraction du système microvasculaire, ils sont composés de plusieurs dizaines de milliers de vaisseaux et possèdent des géométries complexes. Il est donc inenvisageable de résoudre l’écoulement sanguin et le transport de soluté par le biais de méthodes classiques comme les volumes finis ou les éléments finis. Afin de surmonter cette difficulté, nous combinons une approche réseau de pores avec des méthodes de changement d’échelles (prise de moyenne volumique et développements asymptotiques) et des fonctions de Green. Cela nous permet de simplifier à la fois la description de l’écoulement sanguin et du transport de soluté tout en restant cohérent avec la physique sous-jacente. Pour nous assurer de la pertinence de ces simplifications nous validons systématiquement nos modèles en les comparant à des mesures in vitro et in vivo si elles existent et à des solutions analytiques de référence sinon. Une fois validés, nous utilisons nos modèles afin d’élucider le rôle joué par le système microvas- culaire aux stades précoces de la maladie d’Alzheimer. En effet, il a été récemment montré qu’une baisse du débit sanguin cérébral était le premier marqueur quantitatif de la maladie. Simultanément, nos collaborateurs, les professeurs Schaffer et Nishimura de l’université de Cornell, ont observé chez les souris malades qu’une faible proportion (2%-4%) des capillaires étaient obstrués par des globules blancs. En conséquence ils ont injecté un anticorps inhibant l’adhésion de ces derniers. Les vaisseaux se sont alors débloqués, entraînant une augmentation du débit sanguin ainsi qu’une amélioration des capacités cognitives chez les souris malades. Si l’on suppose qu’après l’injection le débit sanguin retrouve sa valeur de référence, on peut estimer que les occlusions capillaires réduisent de 20 % à 30 % le débit sanguin. Une si faible proportion de capillaires obstrués peut-elle avoir un impact aussi important sur le débit sanguin cérébral ? Il est difficile de répondre simplement à cette question en se fiant uniquement à l’expérience puisqu’il est quasiment impossible d’isoler un tel phénomène in vivo que ce soit chez la souris ou chez l’humain. Pour contourner ce problème nous utilisons nos modèles et simulons numériquement l’impact de ces occlusions sur le débit sanguin. Nous trouvons que 2% à 4% d’occlusions capillaires conduisent à une baisse de débit pouvant aller jusqu’à 12%, faisant de ces occlusions un mécanisme important dans l’apparition de la maladie d’Alzheimer. Pour finir, nous quantifions leurs conséquences sur les échanges moléculaires.