Prévision du vieillissement thermo-oxydant de composites à matrice organique dédiés à l'aéronautique : prise en compte des couplages multiphysiques
Institution:
PoitiersDisciplines:
Abstract EN:
The aim of the study is to understand and forecast damage onset conditions in aeronautic C/Epoxy composite materials, under thermo-oxidizing environment. An original testing device is presented, built for loading mechanically composite samples under temperature and gas pressure simultaneously, and studying couplings between deformation and thermooxidation mechanisms. On another hand, a multi physic modeling is performed, minimizing the resort to phenomenological parameters: this theoretical approach is taking into account all phenomena, and provides an expression of the coupling expressions. The model is then implemented in a finite element code, to simulate in a realistic way the composites evolution during a thermo-oxidizing cycle. A quantitative comparison is done between experimentally measured and numerically pre dicted matrix shrinkage values. A good agreement is observed in all onfigurations, as far as damage onset has not occurred. In the latter case, this onset can be detected and the scenario of damage initiation can be foreseen. In the end, the perspective of a multi scale approach is investigated, in order to extend the models application capability to the service life of large structural laminate components
Abstract FR:
L’objectif de ce travail est de comprendre, quantifier et prédire les conditions d’amorçage de l’endommagement dans les matériaux composites C/Epoxy aéronautiques soumis à un environnement thermo-oxydant. Un banc d’essai original a été conçu pour maintenir des échantillons composites en température, sous pression de gaz et sous chargement mécanique simultanément, afin d’étudier les couplages qui peuvent apparaître entre les mécanismes de déformation et de thermo-oxydation. D’un autre côté, une modélisation multiphysique est proposée. Elle est construite dans le cadre thermodynamique des milieux réactifs ouverts : cette approche permet de prendre en compte un grand nombre de mécanismes et établit la forme sous laquelle s’expriment leurs couplages. Le modèle est ensuite implanté dans un code de calcul par éléments finis, pour simuler de manière réaliste l’évolution du composite (champs de contraintes et d’éléments d’oxydation) pendant un cycle de thermo-oxydation. Afin de valider le modèle, une confrontation quantitative est effectuée entre les valeurs expérimentales mesurées de la profondeur des retraits matriciels et celles prédites par le modèle. Un bon accord a été trouvé dans diverses configurations, tant que le retrait généré par la thermo-oxydation ne conduit pas à l’endommagement du matériau. Dans le cas contraire, l’apparition de l’endommagement a été détectée et le scénario d’amorçage est maintenant correctement appréhendé. Enfin, une étude prospective est menée en vue de développer une approche multi-échelle, et mettre ce modèle au service de la prédiction de la durée de vie de pièces composites stratifiées.