Research of trace gases detection methods based on mid-infrared modern photonic instruments
Institution:
LittoralDisciplines:
Directors:
Abstract EN:
This thesis includes two parts: Development and application of a continuous-wave quantum cascade laser (CW-QCL) based instrument for measurements and study of nitrous acid (HONO) and a broadly tunable mid-infrared laser system based on difference frequency generation (DFG) in periodically poled lithium niobate (PPLN) for trace gas ( HCl, CH2O, HONO) monitoring. The OH radical is one of the key species in photochemical cycles responsible for ozone formation, which can lead to the so-called "photochemical smog" pollution. The hydroxyl radical also drives the oxidation of hydrocarbons in the atmosphere. Gaseous nitrous acid (HONO) is a major source of the OH radical in the early morning and daytime. So HONO directly affects the oxidative capacity of the atmosphere and indirectly contributes to secondary pollutants which are products of that oxidation. High accurate and precise concentration measurement of the atmospheric HONO requires high sensitivity and stability, good temporal and spatial resolution. One part of this thesis has been firstly devoted to the design of an optical instrument based on a continuous-wave (CW) quantum cascade laser (QCL) operating at 8 μm (~1255 cm ֿ ¹) for HONO detection. The sensitivity and specificity of the instrument were evaluated and described using HONO sample generated by chemical reaction of H₂SO₄ and NaNO₂. The generated HONO concentration was quantified by means of a denuder system associated with a conventional NOX analyzer. Moreover, within the limits of the QCL frequency, only 5 absorption line intensities of HONO can be found from the reference, so we measured the relative frequencies and line intensities of the remaining absorption lines especially the one which was used to do trace gas measurement. Line strengths of 19 stronger absorption lines observed are found to be around (3-90)×10-21 cm. Direct absorption spectroscopy technique combined with a 125 m multi-pass cell was applied to develop trace gas detection of HONO. In order to improve the sensitivity, wavelength modulation technique was applied, the minimum detectable HONO concentration resulting in a noise-equivalent signal was found to be about 400 ppt in 1 second integration time and fit for field measurements. HONO losses resulted from the optical cell wall was experimentally investigated. The rate constant of HONO determined in the present work might be helpful for field measurements of HONO, especially the measurements using absorption cell. Finally,the QCL-based instrument developed in the present work has been evaluated with in-door simultaneous measurements of HONO and i i CH4. The concentration of the two species obtained in the laboratory were 116 ppb and 1.5 ppm, and the corresponding 1 σ minimum detectable concentrations (MDC) in 1-second integration time are 396 ppt and 6 ppb for HONO and CH4, respectively. The other part of this thesis is focused on highly sensitive trace gas detection employing a room-temperature, broadly tunable and narrow linewidth mid-infrared difference frequency generation laser source. The mid-infrared laser system is based on quasi-phase-matched (QPM) and DFG with a multi-grating temperature-controlled periodically poled LiNbO3 (PPLN) crystal employing two near-infrared diode lasers as pump sources. The mid-infrared coherent radiation is tunable from 3.2 μm to 3.7 μm. Detection of HCl, CH2O has been carried out. According to the absorption band (3590 cm-1) of HONO from references, another DFG laser sources employing a Ti: Sapphire laser and an Yb fiber laser as pump sources was developed, and the output frequency calibration was carried out using pure CO2 gas. HONO measurement in this wavelength range will be performed in the next work.
Abstract FR:
Cette thèse comprend 2 parties : -Le développement et l'application d'un laser à cascade quantique en mode continu pour la mesure de l'acide nitreux à l'état de traces -La détection de traces de gaz (HC1, CH₂O, HONO) par un système laser largement accordable dans le domaine de l'infrarouge moyen, basé sur la génération d'un rayonnement à différence de fréquences (Différence Frequency Generation - DFG) dans un cristal de niobate de lithium à polarisation périodiquement inversées. Le radical d'hydroxyde (OH) est une des espèces principales dans les cycles photochimiques qui sont responsables de la formation de l'ozone, amenant à la formation de "brouillards photochimiques". Le radical d'hydroxyde conduit également à l'oxydation des hydrocarbures dans l'atmosphère. L'acide nitreux gazeux (HONO) est une source importante du radical OH qui affecte directement la capacité oxydante de l'atmosphère et contribue indirectement à la production de polluants secondaires. La mesure précise de concentration atmosphérique de HONO exige une haute sensibilité et une bonne résolution temporelle et spatiale. Le travail principal de cette thèse a été consacré au développement d'un instrument optique basé sur un laser à cascade quantique (QCL) fonctionnant en mode continu vers 8 μm (~1255 cm ֿ ¹) pour la détection de HONO. La sensibilité et la spécificité de l'instrument ont été évaluées en utilisant un échantillon de HONO produit par la réaction chimique entre le H₂SO₄ et le NaNO₂. La concentration de HONO générée a été mesurée au moyen d'un "dénuder" associé à un analyseur conventionnel de NOx. Notez que dans la couverture spectrale du QCL, seules 5 intensités de raie d'absorption de HONO avaient été référencées. Les intensités de 19 nouvelles raies d'absorption de trans-HONO vers 8 μm ont été déterminées dans le travail actuel. Ces raies d'intensité de (0.3-9)x10-²°cm².cm ֿ ¹/molécules sont très intéressantes pour la détection spectroscopique à haute sensibilité. Parmi elles, la plus forte a été employée pour la première fois pour la mesure de traces de HONO dans l'air par la spectroscopie d'absorption directe dans une cellule à multipassage de 125 m. Combinée avec la technique de modulation de longueur d'onde, la concentration minimale détectable de HONO pourrait être inférieure à 40 pptv en 1s de temps d'intégration, convenant aux mesures de HONO atmosphérique sur le terrain. Afin d'estimer l'exactitude de mesure, les pertes de HONO sur la paroi de la cellule optique ont été expérimentalement étudiées. Nous avons observé qu'en utilisant un balayage rapide (à 2.5 kHz dans notre cas) de longueur d'onde laser, ce genre de pertes de HONO n'affectent pas l'exactitude de mesure. Finalement, l'instrument à QCL développé dans le cadre de cette thèse a été évalué en laboratoire par des mesures simultanées de HONO et de CH₄. La deuxième partie de cette thèse a été concentrée sur le développement d'une source laser infrarouge généré par la différence de fréquences (DFG) en quasi-accord de phase (QPM) dans un cristal de niobate de lithium (LiNbO₃) à polarisation périodiquement inversées (PPLN). Le rayonnement DFG était accordable en longueur d'onde de 3,2 à 3,7 μm. Le système laser à DFG développé à Anthui Institute of Optics in Fine Mechanics (AIOFM) en Chine a été utilisé pour la détection de gaz à l'état de traces de HCI et de CH₂O. Afin d'explorer la bande √₁ du trans-HONO près de 2,8 μm (~3590 cm-1) pour la détection de HONO, une nouvelle approche de la DFG fonctionnant vers 2,8 μm a été développé. Un laser à titane saphir et un laser à fibre de Yb ont été utilisés comme sources de pompe pour la génération d'un rayonnement à DFG dans un cristal de PPLN. La métrologie de fréquence du rayonnement DFG a été effectuée en utilisant des spectres d'absorption de CO₂. La mesure de HONO dans cette gamme de longueurs d'onde sera effectuée dans un prochain travail.