Neuro-navigation automatique pour la neuro-imagerie fonctionnelle ultrasonore
Institution:
Université Paris sciences et lettresDisciplines:
Directors:
Abstract EN:
Ultrafast ultrasound imaging is a recent method based on transmission of plane waves which enables the visualization of biological media with high spatio-temporal resolution. When applied to Doppler imaging, it enables detection of blood flow with very high sensitivity compared to conventional ultrasound Doppler usually limited to high blood flow imaging in cardiology. This advances have rendered functional ultrasound (fUS) imaging a valuable neuroimaging modality capable of mapping cerebral vascular networks, but also to indirectly capture neuronal activity with high sensitivity thanks to the neurovascular coupling. However, the expansion of fUS imaging is still limited by the difficulty to identify cerebral structures during experiments based solely on the Doppler images and the shape of the vessels, which complicates the positioning of the ultrasound probe and the data analysis of the data. It is therefore crucial to set up tools dedicated to functional ultrasound imaging in the same way as functional imaging by MRI, which remains the reference modality.This thesis focuses on the development and validation of cerebral GPS, an automatic neuro-navigation tool based on ultrasensitive Doppler vascular footprint of mice and rats. Initially, a vascular anatomical template was built and then registered on familiar atlases (Allen Atlas for the mouse and the SIGMA atlas for the rat) thus allowing the creation of a vascular atlas that can serve as a reference during fUS imaging sessions to align experimental data and provide an anatomical context. The accuracy of the vascular registration was quantified from the super-resolved vascular images obtained with ultrasound localization microscopy.Secondly, the neuro-informatic pipeline has been developed and integrated into a new generation of neuroimaging devices to perform online navigation. We then demonstrated the capability of the system to position itself automatically over chosen anatomical structures and to obtain corresponding functional activation maps even in complex oblique planes. Additionally, we show that the system can be used to acquire and estimate functional connectivity matrices automatically.To go further we explored the potential of vascular GPS to automatically guide intracerebral injections into deep structures. Encouraging results confirmed by fluorescence microscopy images were obtained after injection of a neuronal tracer into the thalamic nucleus. Still on an exploratory basis, we were interested in the reconstruction of structural anatomical images of the brain in addition to the vascular images generally reconstructed in order to assess the echogenicity of a few brain areas identified using vascular GPS. Finally we carried out a longitudinal study in the framework of memory consolidation in rats.This work provides new neuroimaging tools to strengthen the potential of functional ultrasound imaging and allow neuroanatomists experts and non-expert to carry out standardized, reproducible protocols with more accuracy and involving studies on large cohorts.
Abstract FR:
L’échographie ultrarapide est une nouvelle méthode d'imagerie basée sur la transmission des ondes planes et qui permet d'imager les tissus biologiques à très haute cadence et avec une excellente résolution spatiale. Lorsqu'elle est appliqué à l'imagerie Doppler, elle permet d'améliorer considérablement la détection du flux sanguin dans les vaisseaux avec une sensibilité considérablement augmentée par rapport à l'imagerie conventionnelle basée sur la transmission des ondes focalisées. Ainsi le Doppler ultrarapide a ouvert d'autres champs d'applications à l'échographie faisant d’elle une nouvelle modalité précieuse de neuro-imagerie fonctionnelle capable de reconstruire la micro-vascularisation cérébrale mais aussi de mesurer indirectement l’activité neuronale en se basant sur le couplage neuro-vasculaire. Cependant l’expansion de l’imagerie fonctionnelle ultrasonore (fUS) est limitée par la difficulté à se repérer dans le réseau vasculaire complexe du cerveau, ce qui rend complexe le positionnement de la sonde échographique et l’analyse des données. Il est donc crucial de mettre en place des outils de neuro-informatique dédiés à l’imagerie fonctionnelle ultrasonore au même titre que l’imagerie fonctionnelle par IRM qui est la modalité de référence.Les travaux de cette thèse portent donc sur le développement et la validation du GPS cérébral, un outil de neuro-navigation automatique à partir des empreintes vasculaires Doppler ultrasensible de la souris et du rat. Dans un premier temps un template anatomique vasculaire a été construit puis recalé sur des atlas familiers (Atlas Allen pour la souris et l’atlas SIGMA pour le rat) permettant ainsi la création d’un atlas vasculaire pouvant servir de référence lors des sessions d’imagerie fUS pour recaler des données expérimentales et leur fournir un contexte anatomique. La précision du recalage vasculaire a été quantifié à partir des images vasculaires super-résolues obtenues par microscopie de localisation ultrasonore.Par la suite après avoir développé la chaîne neuro-informatique intégrée à une nouvelle génération de neuro-imageurs, nous avons montré la capacité du GPS cérébral à guider le positionnement d’une sonde linéaire sur des zones fonctionnelles choisies afin d’obtenir des cartes d’activation fonctionnelle même sur des plans obliques complexes. Nous avons aussi montré que le GPS cérébral peut être utilisé pour calculer automatiquement la matrice de connectivité en fournissant un contexte anatomique et une segmentation automatique des zones fonctionnelles.Pour aller plus loin nous avons exploré le potentiel du GPS vasculaire à guider automatiquement les injections intra-cérébrales dans des structures profondes. Des résultats encourageants confirmés par des images de microscopie de fluorescence ont pu être obtenus après injection d’un traceur neuronal dans le noyau thalamique. Toujours à titre exploratoire nous nous sommes intéressés à la reconstruction des images anatomiques structurelles du cerveau en plus des images vasculaires généralement générées afin d’évaluer l’échogénicité de certaines zones cérébrales identifiées à l’aide du GPS vasculaire. Enfin nous avons conduit une étude de quantification longitudinale dans le cadre du processus de consolidation du trace mnésique chez la souris. Ces travaux permettent d’apporter des nouveaux outils de neuro-imagerie pour renforcer le potentiel de l’imagerie fonctionnelle ultrasonore et permettre aux experts et aux non-experts neuroanatomistes de réaliser des protocoles standardisés, reproductibles, avec plus de précision et impliquant des études sur de grosses cohortes.