thesis

Développement de technologie µLAS pour la séparation des acides nucléiques

Defense date:

Nov. 20, 2019

Edit

Institution:

Toulouse 3

Disciplines:

Authors:

Directors:

Abstract EN:

Nucleic acids size-separation is an important, routinely used process for diagnosis, forensic analysis, and sequencing. This process is regularly performed using slab gels in research laboratories and using capillary electrophoresis for high throughput analysis in forensic laboratories. In attempts to simplify, reduce the cost and speed up the analysis, microchip technologies, that perform the same function, have been developed, which offered reduced analysis time, sample consumption, cost, and labor in addition to portability, automation and multiplexing. Today, with the advancement of micro and nanofabrication technologies, tens of studies emerge every year on new microchip separation devices for nucleic acids, proteins, particles, cells, bio-vesicles etc. Using different physical principles, each of these devices could separate specific types of molecules or specific size ranges. Our work discusses the development of a microchip technology for the se! paration of nucleic acids; double stranded DNA molecules of different size ranges, single stranded DNA and RNA. The technology called "µLAS" has been created in 2016. It works on the principle of simultaneous fractionation and concentration of nucleic acids in a microfluidic device using opposing electro-hydrodynamic actuation in a viscoelastic polymer sieving matrix. The group had demonstrated the use of the technology for the fractionation of dsDNA over the range of 300-50000 bp, the application of the technology for the diagnosis of Huntington's disease, and the analysis of circulating DNA. Further developments have extended the separation range to 100's of Kbps using microchip and capillary formats. In the capillary format, the technology performs fast analysis of circulating DNA. In the framework of my PhD, I worked on the optimization of chip-based µLAS technology in order to extend the range of separation sizes to DNA molecules from 25 bp to 150 Kbp and to achieve the separation of RNA molecules. This optimization required modeling of size fractionation based on bidirectional electro-hydrodynamic actuation in viscoelastic flows, which accurately reproduces the experimental data. The study of the microchip geometry, different polymer matrix formulations and actuation parameters allows us to show that µLAS is at the forefront of the state of the art thanks to a positioning with respect to all microchip separation techniques.

Abstract FR:

La séparation par taille des acides nucléiques est un processus important, couramment utilisé pour le diagnostic, l'analyse médico-légale et le séquençage. Ce processus est le plus souvent effectué à l'aide de gels en plaques dans les laboratoires de recherche ou par électrophorèse capillaire pour des analyses à haut débit dans les laboratoires de médecine légale. Dans un souci de simplification, de réduction des coûts et d'accélération de l'analyse, des technologies de micropuces remplissant la même fonction ont été développées. Elles offrent une réduction du temps d'analyse, de la consommation d'échantillon, ainsi que la portabilité, l'automatisation et le multiplexage. Aujourd'hui, avec l'avancée des technologies de micro et nanofabrication, des dizaines d'études émergent chaque année sur de nouveaux dispositifs de séparation par micropuces pour les acides nucléiques, les protéines, les particules, les cellules, les biovésicules, etc... Nos travaux portent sur le développement d'une technologie de micropuce pour la séparation des acides nucléiques; molécules d'ADN double brin de différentes tailles et ADN et ARN simple brin. La technologie appelée "µLAS" a été créée en 2016. Elle fonctionne sur le principe du fractionnement et de la concentration simultanés d'acides nucléiques dans un dispositif microfluidique utilisant un actionnement électro-hydrodynamique dans une solution viscoélastique. Le groupe avait démontré l'utilisation de la technologie pour le fractionnement de l'ADN sur une plage de 300-50000 bp et son application pour le diagnostic de la maladie de Huntington et l'analyse de l'ADN en circulation. Dans le cadre de ma thèse, j'ai travaillé sur l'optimisation de la technologie µLAS au format puce afin d'étendre la plage de tailles de séparation aux molécules d'ADN de 25 bp à 150 Kbp et de réaliser la séparation des molécules d'ARN. Cette optimisation a nécessité la modélisation du fractionnement en fonction de l'actionnement électro-hydrodynamique bidirectionnel dans les écoulements viscoélastiques, qui reproduit avec précision les données expérimentales. L'étude de la géométrie de la micropuce, de différentes formulations de matrice polymère et de paramètres d'actionnement nous permet de montrer que µLAS est à la pointe de l'état de l'art grâce à un positionnement sur l'ensemble des techniques de séparation sur micropuces.