Quantum optics with single collective excitations of nanofiber-trapped arrays of atoms
Institution:
Sorbonne universitéDisciplines:
Directors:
Abstract EN:
This thesis focuses on the study of interactions between photons guided by an optical nanofiber and arrays of trapped atoms. Our experimental setup consists in a two-color compensated dipole trap located in the evanescent field of an optical nanofiber in a ultra-high vacuum chamber. Cold cesium atoms are trapped in two 1D arrays above and below the nanofiber. An optical depth of over 130 is achieved with only a few thousand atoms. We demonstrate the ability to prepare the trapped atoms in a single Zeeman sub-level, albeit with limited efficiency. This is an important step towards the realization of a long-lived quantum memory with our fibered platform. The main result of this thesis concerns the initialization of a single collective excitation coupled to the nano-waveguide. The excitation is heralded by the detection of a Raman scattered photon in the nanofiber. We are then able to readout the atomic state and retrieve a single photon in the guided mode with an efficiency of up to 25%. This result is the first demonstration of an atomic entangled state preferentially coupled to a waveguide. It is a milestone in the context of the emerging waveguide-QED approach, with applications to quantum networking, quantum non-linear optics and quantum many-body physics.
Abstract FR:
Cette thèse traite des interactions entre des photons guidés par une nanofibre optique et des réseaux d'atomes piégés. Notre montage expérimental consiste en un piège dipolaire bicolore compensé, généré dans le champ évanescent d'une nanofibre et permettent de piéger des atomes de césium de part et d'autre de la fibre. Une épaisseur optique de plus de 130 est obtenue avec quelques milliers d'atomes seulement. Nous démontrons la capacité de préparer les atomes piégés dans un sous-niveau Zeeman unique, bien qu'avec une efficacité limitée. Cette étape est importante pour la réalisation de mémoires quantiques avec de longs temps de vie avec notre plateforme fibrée. Le résultat principal que nous présentons est la réalisation d'une excitation collective unique dans l'ensemble d'atomes. L'excitation est annoncée par la détection d'un photon émis dans le mode guidé. Nous sommes alors capables de lire l'état atomique et récupérer un photon unique dans le mode guidé avec une efficacité jusqu'à 25%. Ce résultat consiste en une première démonstration d'un état atomique intriqué, couplé préférentiellement à un guide d'onde, une étape importante dans le contexte de l’électrodynamique quantique avec des guides d'ondes.