thesis

Exploitation d’hétérostructures d’oxydes intégrant La₂⁄₃Sr₁⁄₃MnO₃ pour des applications spin-orbitroniques et magnoniques

Defense date:

Dec. 17, 2020

Edit

Disciplines:

Authors:

Abstract EN:

Classical spintronic devices use the exchange interaction between conduction electron spins and local spins in magnetic materials to create spin-polarized currents, or to manipulate nanomagnets by spin transfer from spin-polarized currents. A novel direction of spintronics –called spin-orbitronics - exploits the spin-orbit coupling in nonmagnetic materials instead of the exchange interaction in magnetic materials to generate, detect or exploit spin-polarized currents. Another one –magnonics- explores the potential of spin waves to carry and process information in magnetic nanostructures. For a broad range of applications in both fields, materials with ultralow magnetic damping values are required. In this thesis we first explored the potential of the half metallic material La₂⁄₃Sr₁⁄₃MnO₃ (LSMO) to obtain very low damping. We studied the effect of strain and temperature on the damping of LSMO thin films. Subsequently, LSMO films were used as spin-current injectors in spin-orbitronic heterostructures. In those we also studied the opportunity to control the spin-charge interconversion by adding a ferroelectric material, BiFeO₃ (BFO) by exploiting the interface effects. Finally, we explored the potential of LSMO/BFO bilayers for reprogrammable magnonic crystals.

Abstract FR:

Les dispositifs spintroniques classiques utilisent l'interaction d'échange entre les spins des électrons de conduction et les moments magnétiques locaux dans les matériaux magnétiques pour créer des courants polarisés en spin, ou pour manipuler l’aimantation par transfert de spin à partir de courants polarisés en spin. Une nouvelle direction de la spintronique - appelée aussi spin-orbitronique - exploite le couplage spin-orbite dans les matériaux non magnétiques au lieu de l'interaction d'échange dans les matériaux magnétiques dans le but de générer, détecter ou exploiter des courants polarisés en spin. Une autre voie - la magnonique - explore quant à elle le potentiel des ondes de spin pour transporter et traiter des informations dans des nanostructures magnétiques. Pour une large gamme d'applications dans ces deux domaines, des matériaux avec des très faibles valeurs d'amortissement magnétique sont nécessaires. Dans cette thèse, nous avons d'abord exploré le potentiel du matériau demi-métallique La₂⁄₃Sr₁⁄₃MnO₃ (LSMO) pour obtenir de très faible valeur d’amortissement magnétique. Nous avons étudié notamment l'effet de la contrainte et de la température sur les processus de relaxations magnétiques des couches minces LSMO. Par la suite, les films LSMO ont été utilisés comme injecteurs de spin dans des hétérostructures d’oxydes dans une perspective spin-orbitronique. Aussi, nous avons étudié l'opportunité de contrôler l'interconversion spin-charge en ajoutant un matériau ferroélectrique, BiFeO₃ (BFO) en exploitant les effets d'interfaces. Enfin, nous avons exploré le potentiel des bicouches LSMO / BFO dans le but de réaliser des cristaux magnoniques reprogrammables.