thesis

Spin-to-charge current conversion in SrTiO3-based two-dimensional electron gases

Defense date:

Dec. 10, 2018

Edit

Institution:

Sorbonne université

Disciplines:

Abstract EN:

This thesis is composed by four chapters. In the first, we start by introducing basic concepts in spintronics, such as the electron spin, a definition of spin current, and how spins behave in real materials. Then, we review the main consequences of the relation between charge and spin currents in different materials, and how a charge current can be converted in a spin current (and vice-versa). In particular scenarios, the physics of the interconversion follows special symmetry considerations in the framework of the Dressllehaus and Rashba effects, which in turn explain the spin-to-charge current interconversion in 2D electron gases through the direct and inverse Edelstein effect. In the second chapter, we introduce the main material used throughout this thesis: strontium titanate (SrTiO3). After reviewing its main features, we explore the remarkable 2D elec-tron gas found in the LaAlO3/SrTiO3 system. We discuss in detail the origin of the interfacial conductivity that arises between these two insulators, the critical thickness for conduction of 4 unit cells of LaAlO3, and the main mechanisms that lead to the 2D electron gas formation (polar catastrophe, cation interdiffusion, surface reactions and polarity-induced defects). Then, we thoroughly describe the experimental procedure to obtain such heterostructures, including a comprehensive guide on the surface treatment of SrTiO3 single crystals, the pulsed laser deposition growth of ultra-thin LaAlO3 films and magnetron sputtering. In addition, we elaborate on the two main techniques used to evaluate the interfacial properties, X-ray photoelectron spectroscopy and magnetotransport, while showing some results for LaAlO3/SrTiO3 samples. Lastly, we show how a thin deposition of a metallic layer on top of LaAlO3/SrTiO3 can drastically change the interfacial properties, by reducing (if the metal is reactive) or increasing (for noble metals) the critical thickness for conduction. We end this chapter by giving a blueprint that describes how a 2D electron gas can be created in other oxide systems. In the third chapter we investigate spin-tocharge conversion phenomena. We start by giving an overview on experimental observations of Rashba 2D electron gases, as well as spin-to-charge current conversion through the inverse Edelstein effect in semiconductor quantum wells, topological insulators and oxide-based systems. Then, we thoroughly introduce spin pumping, a technique used to generate pure spin currents. Results for spin-to-charge current conversion in the LaAlO3/SrTiO3 and metal-capped SrTiO3 systems are shown, accompanied by an interpretation of the large and tunable conversion efficiency. For the metal-capped SrTiO3 case, angle-resolved photoemission spectroscopy and notions of electronic band mixing and topology are introduced to describe the extremely large efficiency. In the last chapter, we show additional experiments performed on the LaAlO3/SrTiO3 system regarding anisotropic and unidirectional magnetoresistance, while reviewing the scarce bibliography on these effects in 2D electron gases. After that, we introduce a recently discovered effect, the unidirectional spin Hall magnetoresistance, and develop a simple conceptual model for an analogous effect in 2D electron gases: the unidirectional Edesltein magnetoresistance. This effect is based on the expected strong charge-to-spin conversion in 2D electrons gas, and the interaction of the generated spin currents with an adjacent ferromagnet. We finish by very briefly showing preliminary experiments in NiFe/ LaAlO3/SrTiO3 heterostructures.

Abstract FR:

Ce travail présente l’étude de la conversion courant de spin en courant de charge dans les gaz d’électrons bidimensionnels à base de SrTiO3. Nous commençons par une présentation des concepts de base de la spintronique : le spin, une définition du courant de spin et le comportement des spins dans des matériaux, les principales conséquences de la relation entre les courants de charge et de spin dans différents matériaux, et comment un courant de charge peut être converti en un courant de spin (et vice versa). Dans des scénarios spécifiques, la physique de l’interconversion suit des considérations de symétrie particulières dans le cadre des effets de Dressllehaus et de Rashba, qui expliquent l’interconversion du courant de charge/spin dans les gaz d’électrons 2D via l’effet direct et inverse d’Edelstein. Dans le deuxième chapitre, nous présentons le principal matériau utilisé dans cette thèse: le titanate de strontium (SrTiO3). Après avoir analysé ses principales caractéristiques, nous explorons le gaz d’électrons 2D présent dans le système LaAlO3/SrTiO3. Nous discutons en détail de l’origine de la conductivité interfaciale entre ces deux isolateurs, l’épaisseur critique de conduction de 4 mailles de LaAlO3 et des principaux mécanismes conduisant à la formation du gaz électronique 2D (catastrophe polaire, interdiffusion de cation, réactions à la surface et défauts induits par la polarité). Ensuite, nous décrivons en détail la procédure expérimentale pour obtenir des hétérostructures de LaAlO3/SrTiO3: le traitement de surface des monocristaux de SrTiO3, la croissance par ablation laser pulsé de films ultra-minces de LaAlO3, et la pulvérisation cathodique. Nous introduisons les deux techniques principales utilisées pour évaluer les propriétés interfaciales, la spectroscopie photoélectronique de rayons X (XPS) et le magnétotransport, avec quelques résultats pour les échantillons de LaAlO3/SrTiO3. Enfin, nous montrons comment un mince dépôt d’une couche métallique sur LaAlO3/SrTiO3 peut modifier radicalement les propriétés interfaciales en réduisant (si le métal est réactif et possède un travail de sortie inférieur à une valeur critique) ou en augmentant (pour les métaux nobles) l’épaisseur critique de la conduction interfacial. Pour conclure ce chapitre, nous proposons un modèle qui décrit comment un gaz d’électrons 2D peut être créé dans d’autres systèmes à base d’oxydes complexes. Dans le troisième chapitre, nous étudions les phénomènes de conversion spin/charge. Nous commençons par un état de l’art de la littérature concernant des observations expérimentales des gaz d’électrons Rashba 2D, ainsi que de la conversion du courant spin-à-charge par l’effet Edelstein inverse dans les puit de potentiel à base de semi-conducteurs, les isolants topologiques et les systèmes à base d’oxydes. Ensuite, nous introduisons le pompage de spin, une technique utilisée pour générer des courants de spin purs. Les résultats de la conversion du courant spinà-charge dans les systèmes LaAlO3/SrTiO3 et metal/SrTiO3 sont présentés, accompagnés d’une interprétation de la géante et ajustable con-version spin/charge. Dans le cas d’échantillons composés par metal/SrTiO3 , la spectroscopie photoélectronique résolue en angle (ARPES) et les notions de mélange de bande électronique et de topologie sont introduites pour justifier la conversion charge/spin extrêmement élevé. Dans le dernier chapitre, nous montrons des expériences supplémentaires réalisées sur le système LaAlO3/SrTiO3 en ce qui concerne la magnétorésistance anisotrope et unidirectionnelle [...]