Physico-chimie d'une décharge électrique impulsionnelle dans un mélange air iso-octane : application au reformage par association plasma-catalyseur
Institution:
Paris 11Disciplines:
Directors:
Abstract EN:
This thesis deals with the hydrogen production (reforming), for use in a fuel-cell vehicle, from a hydrocarbon: iso-octane, using a non-equilibrium plasma coupled to a catalyst. This work is part of a PSA Peugeot Citroen and LPGP program. A Dielectric Barrier Discharge is used as a non-equilibrium plasma, with or without a reforming catalyst of iso-octane. The experiments show that characteristics of the electric discharge (voltage, current, energy) are dependent on the flowing gas temperature and the presence of water vapour. Plasma chemical decomposition of iso-octane is higher and increased with temperature: 80 % at ambient temperature and 280 J/l energy, 100 % at 600°C and 30 J/l. The conversion by-products are analysed outlet discharge and post-discharge, namely H₂, CO, CO₂, hydrocarbons, ketones and olefins. . . The formation of these molecules is explained using kinetic schemes for the oxidation of iso-octane. From 1000 ppm of iso-octane in 1 l/min of air, a few hundred ppm of hydrogen are measured. Lt's insufficient for an industrial application. In order to improve the plasma efficiency, a reforming rhodium-catalyst of iso-octane is coupled to the discharge. We showed that a plasma pretreatment of the gas at 80 J/l and 250°C induced a catalyst activation at a temperature below its normal minimal operating temperature.
Abstract FR:
Ce travail de thèse s'inscrit dans le cadre de la production d'hydrogène (reformage), pour alimenter un véhicule pile à combustible, à partir d'un hydrocarbure : l'iso-octane, et par l'association d'un plasma non thermique à un catalyseur. Il fait l'objet d'une collaboration entre PSA Peugeot Citroën et le LPGP. Le plasma non-thermique utilisé est une Décharge à Barrière Diélectrique, couplé ou non à un catalyseur de reformage de l'iso-octane. Les résultats expérimentaux montrent que les caractéristiques électriques de la décharge (tension, courant, énergie) dépendent de la température du mélange gazeux et de la présence de la vapeur d'eau. La mesure de la concentration de l'iso-octane, traité par plasma, donne un taux élevé de conversion de l'hydrocarbure : 80% de conversion dès la température ambiante pour une énergie 280 J/l, et une conversion totale à 600°C pour une énergie 30 J/l. L'analyse des produits en sortie de la décharge et en post-décharge a permis d'identifier : H₂, CO, CO₂, hydrocarbures, cétones et oléfines. . . Nous avons présenté des schémas cinétiques pouvant expliquer la formation des molécules identifiées. Les concentrations d'hydrogène mesurées ne dépassent pas les quelques centaines de ppm de H₂ à 600°C et à partir de 1000 ppm d'iso-octane dans 1 l/min d'air. C'est donc insuffisant pour une application industrielle. Un catalyseur de reformage en rhodium est couplé au plasma pour améliorer le rendement en H₂. Nous avons montré l'activation du catalyseur à une température au-dessous de sa température de fonctionnement minimale, par l'application d'une décharge en amont du catalyseur à une énergie supérieure ou égale à 80 J/l.