thesis

Growth of epitaxial graphene on SiC (0001) by sublimation at low argon pressure

Defense date:

Oct. 12, 2018

Edit

Institution:

Montpellier

Disciplines:

Authors:

Directors:

Abstract EN:

This manuscript presents a work aiming to optimize a reproducible and controlled growth process of a monolayer graphene on Si-face of SiC (SiC (0001)) by sublimation under low argon pressure, i.e. 10 mbar. This low pressure process is challenging regarding the results in the literature. Various complementary techniques as optical microscopy, Raman spectroscopy, atomic force microscope, scanning tunneling microscope, and Hall Effect measurements have been performed on the samples in order to validate the monolayer graphene growth and investigate their surface morphology, their structural and electronic properties. All the results obtained from these measurements confirm the control of homogeneous, continuous and large-size (6×6 mm²) monolayer graphene from our optimized growth process. More than 50 monolayers graphene were produced during this thesis, validating a reproducible process in a prototype furnace developed by Annealsys, local company in Montpellier. The step-flow growth mode which encourages the formation of step-terrace surface structures is obtained under this unclassical growth condition contrary as established in the literature. Moreover, we have investigated the effect of the temperature ramp on the SiC morphology to evaluate the impact of the width of the terraces on electronic properties of graphene. Samples with terraces larger than 10 µm have been obtained allowing original transport measurements localized on only one terrace.Thanks to the reproducibility of our optimized growth process, further characterization studies on epitaxial graphene were investigated. The first carbon layer grown on SiC (0001) is a buffer layer covalently linked to SiC. Then a second buffer layer grows under the first one that becomes graphene. This well-known buffer layer at graphene / SiC (0001) interface has been investigated in this thesis to complete the poor literature on this topic. Statistically buffer Raman signatures have been obtained and compared to the literature demonstrating an inhomogeneous buffer layer. Furthermore, we have developed two graphene transfer techniques aiming to exfoliate graphene layer and leave behind only the buffer layer on the sample surface. The Raman signatures of buffer layer in these two cases (with or without graphene coverage) have been compared. We believe the evidenced evolution could be related to the coupling between graphene and buffer layer. Two major results illustrate this coupling: (i) the Raman signature of buffer layer increases in integrated intensity after the graphene transfer and (ii) two fines peaks are observed only in epitaxial graphene spectra and not in uncovered buffer layer spectra.The last part of this work concerns the electrical properties of monolayer graphene on SiC (0001). Contrary to the typical n-type doping of epitaxial graphene, the low p-type residual Hall concentration observed in our samples has been related to the atmospheric effect. More precisely, the charged impurities deposited on the sample surface could lead to the formation of electron-hole puddles, resulting in an inhomogeneous doping. The potential fluctuation has been estimated by fitting the experimental data using a model of two types of charges. Moreover, we have shown that the doping type change from p-type to n-type under vacuum condition or under UV illumination. This could be explained by desorption of the charged absorbents during the pumping or UV illumination. These results demonstrate the possibility of tuning the electrical properties of our samples by external factor such as UV light.

Abstract FR:

Cette thèse porte sur l’optimisation d’un procédé de croissance, reproductible et contrôlé, d’une monocouche de graphène sur la face –Si du carbure de silicium (SiC (0001)) par sublimation sous faible pression d’argon (10 mbars). Au vue de la littérature, cette croissance à faible pression reste un challenge. Différentes techniques complémentaires telles que la spectroscopie Raman, la microscopie à force atomique, la microscopie à effet tunnel et des mesures d’effet Hall ont été menées afin de valider la croissance de la monocouche et d’en étudier sa morphologie de surface ainsi que ses propriétés structurales et électroniques. L’ensemble des résultats obtenus démontre le contrôle de la croissance d’une monocouche de graphène homogène, continue et de grande taille (6x6mm²). Plus de 50 échantillons monocouches ont été synthétisés pendant la thèse démontrant ainsi un procédé reproductible dans un bâti de croissance prototype de la société montpelliéraine Annealsys. Un mécanisme de croissance en bord de marche et la présence de marches et de terrasses a pu être mis en évidence alors que la littérature rapporte des difficultés à optimiser des procédés de croissance à basse pression d’argon. L’effet de la vitesse de montée en température a également été étudié dans le but de contrôler la morphologie du SiC de façon à pouvoir évaluer l’impact de la largeur des marches sur les propriétés électroniques du graphène. La largeur des marches obtenue (10 µm) permettront des mesures originales de transport, localisées sur une marche.Le procédé robuste et reproductible développé a permis différentes études approfondies sur ce graphène épitaxié. Sur la face-Si du SiC croît d’abord une couche tampon liée de manière covalente au SiC. Une deuxième couche tampon croît sous la première qui devient alors du graphène. Le peu de résultats présents dans la littérature nous a conduit à étudier cette couche d’interface entre le graphène et le SiC. A partir d’un nombre important de mesures par spectroscopie Raman, la signature de cette couche tampon a pu être obtenue. Un spectre Raman inhomogène de celle-ci a été mis en évidence. Pour aller plus loin, nous avons mis en œuvre deux techniques d’exfoliation du graphène pour avoir accès à la couche tampon sur SiC. Les signatures Raman des couches tampon couvertes ou non de graphène ont été analysées et comparées. Deux résultats majeurs sont à souligner : (i) l’aire du signal Raman de la couche tampon augmente après le retrait du graphène et (ii) deux pics fins sont observés seulement sur le spectre du graphène épitaxié. Ces résultats démontrent l’existence d’un couplage entre le graphène et la couche tampon.La dernière partie de ce travail de thèse concerne les propriétés électriques de ces monocouches de graphène sur SiC. Contrairement au classique dopage n du graphène épitaxié sur SiC (0001), un dopage résiduel de type p a été mesuré et attribué à un effet de l’environnement. Les impuretés chargées présentes à la surface des échantillons pourraient être à l’origine de flaques d’électrons et de trous (puddles) réparties à la surface des échantillons et responsables de leur dopage inhomogène. Ces fluctuations de potentiel ont été estimées en ajustant les données expérimentales à partir d‘un modèle mettant en jeu deux types de porteurs. De plus, nous avons pu mettre en évidence un changement de dopage d’un type p à n sous vide et sous illumination UV. La désorption d’absorbants chargés pourrait expliquer ce changement. Ces résultats démontrent une possible modulation des propriétés électriques de nos échantillons par un facteur externe tel que l’exposition aux UV.