thesis

Détermination de lois de comportement couplé par des techniques d'homogénéisation : application aux matériaux du génie électrique

Defense date:

Jan. 1, 2009

Edit

Institution:

Paris 11

Disciplines:

Abstract EN:

This study is focused on the development of accurate homogenization models for coupled behavior (such as piezoelectricity or magnetostriction). The main development in this study is the adaptation of classical uncoupled methods based on a clever decomposition of the fields in different terms, depending on their physical origin. Nonlinear behavior has been taken into account through a linearization process. An improvement has been obtain by including the second order moments of the fields in the models. The developed models have been validated through a comparison of the results with the ones obtained from a Finite Element model. The results show a good agreement with a very lower computational cost for homogenization (ratio over 1000 when dealing with linear constitutive laws). The homogenization model has also been able to catch extrinsic effects, such as the magnetoelectric effect. The ratio between estimation quality / computation time shows the advantages of homogenization methods, which have been successfully adapted to coupled behavior.

Abstract FR:

L’objectif de cette étude a été de développer des outils d’homogénéisation pour les comportements couplés (comme par exemple la magnétostriction ou la piézoélectricité). Le principal développement issu de cette thèse est l’adaptation des outils d’homogénéisation classiques (découplés) grâce à un formalisme de décomposition des champs suivant leurs origines physiques. Cette décomposition mène à une réécriture des lois de comportements des matériaux avec des lois a priori découplées, associées à des relations additionnelles de couplage. Cette réécriture permet d’utiliser les outils classiques (découplés) d’homogénéisation sans adaptation majeure. La prise en compte des non-linéarités des lois de comportement a été prise en compte au travers de plusieurs procédures de linéarisation. Une amélioration à cette démarche a également été obtenue en prenant en compte les fluctuations intraphases (les moments d’ordre 2 pour débuter) des champs étudiés. Il a fallu pour cela adapter les outils d’homogénéisation, qui se contente des seules valeurs moyennes en règle générale. Les outils d’homogénéisation développés pendant cette thèse ont été validés par comparaison avec une modélisation par Eléments Finis. Les résultats ont montré un très bon accord, pour un temps de calcul bien inférieur pour l’homogénéisation (rapport d’environ 1000 pour les comportements linéaires). Les modèles d’homogénéisation sont également capables de capturer les effets de couplage dits extrinsèques, les résultats étant encore en bon accord avec ceux provenant du modèle Éléments Finis. Le rapport qualité de l’estimation / temps de calcul est donc très favorable à l’homogénéisation.