Eau surfondue et (bi)polarons dans les nanostructures
Institution:
AngersDisciplines:
Directors:
Abstract EN:
We investigate the presence of dynamical heterogeneities in supercooled water with molecular dynamics simulation. The new water model TIP5P proposed by Mahoney and Jorgensen which reproduces well water properties is used. We validate our simulation by a compartive study of our results and those obtained in experiments. Thereafter, We show the existence of dynamic heterogeneities in supercooled water. We then studied dynamic aggregations of the molecules of different mobilities and find a string-like dynamics for the most mobile molecules and also dynamical aggregation of the least mobile molecules. The two kinds of dynamical aggregation appear however to be very different. We observes two different times characteristic associated to the two types of heterogeneities. Many sizes of boxes are used for simulations and we show the finite size effect on static and dynamic properties of supercooled water. In the second part of this work, we studied the properties of the charge carriers in mesoscopic structures type OD, 1D, 3D. Using Feynman variational method we carry out theoretical calculations of the characteristics (energy and mass) of the (bi)polaron in nanostructures. We obtain the relation between these characteristics, radius, anisotropy and the Fröhlich electron-phonon coupling constant. By numerical optimization, we obtained that the ground state energy and mass of (bi)polaron increase with the coupling constant and confinement frequency. We developed a theory of photoluminescence assisted by phonons in a spherical nano crystal for various mechanisms of interaction between the electrons and the phonons.
Abstract FR:
Nous étudions par dynamique moléculaire la présence des hétérogénéités dynamiques dans l'eau surfondue. Nous utilisons le récent modèle TIP5P de Mahoney et Jorgensen qui est aujourd'hui le potentiel qui reproduit le mieux les propriétés de l'eau que nous étudions. Les résultats de nos simulations sont en bon accord avec ceux obtenus expérimentalement ce qui nous a permis de valider notre programme. Par la suite, nous montrons l'existence d'hétérogénéités dynamiques dans l'eau surfondue. Nous avons étudié les agrégations dynamiques des molécules de mobilités différentes. Nous observons l'agrégation dynamique des molécules les plus mobiles ainsi que leurs mouvements sous forme de chaînes d'hétérogénéités. Les molécules les moins mobiles quant à elles forment des groupements dont la taille augmente lorsque la température baisse. Nous observons la présence de deux temps caractéristiques associés au deux types d'hétérogénéités et évoluant différemment. Nous montrons la présence d'effets de taille finie dans l'eau surfondue qui s'accroissent lorsque la température baisse. Dans l'autre partie de ce travail, nous avons étudié les propriétés des porteurs de charges dans les nano structures de type OD, 1D, 3D. Nous effectuons des calculs théoriques des caractéristiques (énergie et masse) du (bi)polaron dans les nanostructures à l'aide de la méthode variationnelle de Feynman. Nous obtenons la relation entre ces caractéristiques, le rayon, l'anisotropie et la constante de couplage électron-phonon de Fröhlich. Par optimisation numérique, nous montrons l'évolution de ces caractéristiques au fondamental de niveaux d'énergies. Nous développons une théorie de photoluminescence assisté par des phonons dans un nano cristal sphérique pour différents mécanismes d'interaction entre les électrons et les phonons.