Synthèse Contrôlée de Nanoparticules de Métaux Oxophiles en Milieu Liquide lonique pour Applications en Microélectronique
Institution:
Lyon 1Disciplines:
Directors:
Abstract EN:
Small size (below 10 nm) metallic nanoparticles and metallic nanoalloys have attracted much interest in a range of applications, which require precise control of size, composition, and morphology, in chemically significant quantities. Hence, the variety of compositions and structures (size, morphology, atomic arrangement) bring a vast range of possibilities. This PhD was aimed at expanding the knowledge already obtained in this laboratory on monometallic nanoparticles. Indeed, it has been demonstrated that the decomposition of organometallic precursors in selected ionic liquids can lead to the formation of stable suspensions of metallic nanoparticles below 5 nm. In this context, a first achievement in this work has been to push this route towards more oxophilic, less approachable metals, such as tantalum. Besides, this route has been shown to generate bimetallic nanoparticles upon decomposition of mixtures of precursors, with size, structure and composition controlled, such as Ru@Cu. This PhD work has dentified the mechanism of formation of these nanoalloys, developing a versatile route that could be used to design nanoalloys to fulfill specific applications, e.g., RuNi, RuTa, CuNi, etc
Abstract FR:
Les nanoparticules et nano alliages métalliques (dont la taille est inferieure à 10 nm) revêtent un grand intérêt dans de nombreuses applications, pour lesquelles un contrôle précis de la taille, de la composition et de la morphologie de ces objets sont requis. En effet, la diversité des compositions et des structures (taille, morphologie et arrangement atomique) offre une gamme presque illimitée de possibilités. Ce travail de thèse étend une approche développée au Laboratoire, qui consiste à former des nanoparticules métalliques de taille contrôlée (inférieure à 5 nm) par décomposition de précurseurs organométalliques dans des liquides ioniques. Une première avancée a consisté à utiliser cette voie de synthèse pour former des nanoparticules de métaux oxophiles, plus difficiles à obtenir, telles que des nanoparticules de tantale. Par ailleurs, il avait été démontré que le mélange de deux précurseurs organométalliques conduit à la formation de nanoparticules bimétalliques dont la taille, la structure et la composition sont bien définies, comme c'est le cas pour Ru@Cu. Dans cette thèse, le mécanisme de formation de ces nano alliages a été étudié et identifié. L'élucidation de ce mécanisme ouvre ainsi une voie vers la synthèse à façon pour des applications spécifiques de nano alliages tels que RuNi, RuTa, CuNi, etc