thesis

Comparaison des performances catalytiques des systèmes oxydes de Ce, Al et Mn dans l'oxydation totale des particules carbonées et le vaporeformage du méthanol

Defense date:

Jan. 1, 2007

Edit

Institution:

Littoral

Disciplines:

Authors:

Abstract EN:

The carbonaceous particles are one of the sources of the air pollution. Their collection is done by particulate filters followed by their elimination by catalytic or thermal ways. Another possibility for the reduction of the air pollution will be to change towards sources of clean energy to replace fossil energies. To this end, catalysts containing cerium, aluminum and manganese were studied in the combustion of the carbon black like in the reaction of steam reforming of methanol in order to produce hydrogen for fuel cells. Concerning the combustion of the carbon black, two types of contacts between the carbon particles and the catalyst were studied. The weak contact and the strong contact. The carbon black is characterized by the presence of intrinsic paramagnetic centres which are sensitive to oxygen in air. The formation of new species ascribable to localised paramagnetic spins with the interface of catalyst-NC, is highlighted following the strong contact between the two solids. Under these conditions, the ceria and contrary to alumina, is powerful in the reaction of combustion of the carbon black. Catalysts xMn/Ce and xMn/Al (x can change from 10-4 to 1) were prepared and activated at 600°C. The manganese addition improves the catalytic reactivity of these solids in the combustion of carbon black. The increase in the manganese content returns the oxidation of the possible carbon black at temperatures close to those obtained in a muffler. The catalysts present primarily the Mn2O3 phase at their surface with more marked presence of Mn(II) species in the case of alumina compared to the ceria. The setting in contact of the carbon black with the manganese deposited on the ceria causes the reduction of the manganese species and contributes to the reactivity of these solids. The low reactivity of the Mn/Al catalysts was explained by the strong stability of the manganese species being on alumina. All these catalysts are completely selective for the formation of CO2. The catalytic performances of these solids used in the reaction of steam reforming of methanol for the production of the hydrogen gas, remain below those obtained for transition metal oxide bases catalysts (Cr, Co, Ni, Mo,. . . ) considered as the current state of art in this field. Nevertheless, catalysts containing copper impregnated on a binary system ceria-alumina, show themselves very powerful and promising for the production of H2 supplying the fuel cells.

Abstract FR:

Les particules carbonées sont une des sources de la pollution atmosphérique. Leur collecte se fait par des filtres à particules suivie par leur élimination par voies catalytiques ou thermiques. Une autre possibilité pour la réduction de la pollution atmosphérique sera de s’orienter vers des sources d’énergies propre en remplacement des énergies fossiles. Dans ce but, des catalyseurs à base de cérium, aluminium et manganèse ont été étudiés dans la combustion du noir de carbone ainsi que dans la réaction de vaporeformage du méthanol afin de produire de l’hydrogène pour les piles à combustibles. Concernant la combustion du noir de carbone, deux types de contacts entre les particules de carbone et le catalyseur ont été étudiés. Le contact faible et le contact fort. Le noir de carbone est caractérisé par la présence de centres paramagnétiques intrinsèques qui sont sensibles à l’oxygène de l’air. La formation de nouvelles espèces attribuables à des spins paramagnétiques localisés à l’interface du catalyseur-NC, est mise en évidence suite au contact fort entre les deux solides. Dans ces conditions, la cérine et contrairement à l’alumine, se montre performante dans la réaction de combustion du noir de carbone. Des catalyseurs xMn/Ce et xMn/Al (x allant de 10-4 à 1) ont été préparés et activés à 600°C. L’ajout de manganèse améliore la réactivité catalytique de ces solides vis-à-vis de la combustion du noir de carbone. L’augmentation de la teneur en manganèse rend l’oxydation du noir de carbone possible à des températures proches de celles obtenues dans un pot d’échappement. Les catalyseurs présentent essentiellement la phase Mn2O3 à leur surface avec une présence plus marquée d’espèces Mn(II) dans le cas de l’alumine par rapport à la cérine. La mise en contact du noir de carbone avec le manganèse déposé sur la cérine provoque la réduction des espèces manganèse et contribue à la réactivité de ces solides. La faible réactivité des catalyseurs Mn/Al a été expliquée par la forte stabilité des espèces manganèse se trouvant sur l’alumine. Tout ces catalyseurs sont totalement sélectifs pour la formation du CO2. Les performances catalytiques de ces solides utilisés dans la réaction de vaporeformage du méthanol pour la production de l’hydrogène gazeux, restent en dessous de celles obtenues pour des catalyseurs à bases d’oxydes de métaux de transition (Cr, Co, Ni, Mo,…) considérés comme l’état de l’art actuel dans ce domaine. Néanmoins, des catalyseurs à base de cuivre imprégné sur un système binaire cérine-alumine, se montrent très performants et prometteurs pour la production de H2 alimentant les piles à combustibles.