Analyse de la dynamique de réplication préméiotique chez Saccharomyces cerevisiae par peignage moléculaire de l'ADN
Institution:
Montpellier 2Disciplines:
Directors:
Abstract EN:
The duplication of chromosomes in eukaryotes initiates from numerous origins that are activated during S phase according to specific spatio-temporal replication programs. These replication programs are connected to downstream cell cycle events and contribute to accurate transmission of the genetic material to progeny, yet they are flexible and can adapt to varying physiological conditions. In the yeast Saccharomyces cerevisiae, for example, meiosis can be considered as a differentiation program whereby a diploid cell gives rise to four genetically different haploid cells. Interestingly, premeiotic DNA replication is usually two to three times longer than during vegetative cell division (mitosis), in multiple organisms, yet no one really knows why. The aim of my thesis work was to uncover the reasons for this S phase extension in meiosis, using a state-of-the-art imaging technique called DNA combing. With this technique that I contributed to improve, the firing of origins as well as replication fork progression rates can be monitored on the level of single DNA molecules. My data indicate that the same number of origins is used in mitosis and meiosis. However, by focusing on a single chromosome (Chr. VI) we discovered that, although the same set of origins is used, it is activated following a different program. A first subset of origins fires with high efficiency, then replication forks seem to pause for a long while before a second subset of origins fires. I tried using various mutants to determine the nature of these replication pausing sites and their potential link with the induction of meiotic recombination, which is essential for correct chromosome segregation in meiosis. This process begins with the formation of double-strand breaks (DSBs) that require the concerted action of a number of meiotic-specific proteins, among which Mer2, Rec114 and Spo11. In order to see if these DSB proteins are responsible the lengthening of S in meiosis, I analyzed replication dynamics in strains lacking these proteins. Besides this work, I also demonstrated the utility of DNA combing for defining when DNA replication is completed in mitotic cells, a measure that was not available from current techniques. This way I was able to show that yeast cdc14-1 cells, defective for a conserved protein phosphatase needed for ribosomal DNA (rDNA) segregation and mitotic exit, finish rDNA replication much later than control cells. It is likely that the failure of cdc14-1 cells to finish rDNA replication in time is responsible for its non-segregation in anaphase
Abstract FR:
Chez les eukaryotes, la duplication des chromosomes est initiée à partir des origines de réplication selon une chorégraphie spatio-temporelle bien définie qui contribue au bon déroulement des autres évènements du cycle cellulaire, assurant ainsi la transmission correcte du patrimoine génétique. Ce programme spatio-temporel n'est pas rigide et peut varier selon le type cellulaire et s'adapter aux conditions physiologiques. Chez la levure Saccharomyces cerevisiae, par exemple, la méiose est un exemple de différentiation cellulaire au cours de laquelle une cellule diploïde va générer quatre cellules haploïdes génétiquement différentes, et où la phase de réplication des chromosomes est deux à trois fois plus longue que lors du cycle végétatif. Mon travail de thèse a consisté principalement à définir les causes de cette extension, en utilisant la technique très résolutive du peignage moléculaire de l'ADN qui permet, à partir de molécules uniques, de déterminer la cinétique d'activation des origines et la progression des fourches de réplication. L'analyse d'un chromosome isolé (Chr. VI) indique que les mêmes origines sont utilisées en mitose et méiose, mais selon un programme d'activation différent. Nos résultats suggèrent aussi qu'en méiose les fourches de réplication ralentiraient au niveau de sites de pause. J'ai alors tenté d'élucider les causes moléculaires de ces pauses et leur lien éventuel avec la mise en place de la recombinaison méiotique, une étape fondamentale pour la ségrégation correcte des chromosomes et le brassage génétique lors de la formation des gamètes. Ce processus est initié par la formation des Cassures Double Brin (CDB) qui requiert l'intervention d'un complexe protéique spécifique de la méiose, constitué notamment de Mer2, Rec114 et Spo11. La dynamique de réplication a été étudiée dans des souches mutées pour ces protéines. Parallèlement à ces travaux sur la méiose, j'ai aussi amélioré la technique du peignage moléculaire et démontré son utilité pour déterminer avec précision la fin de la réplication des chromosomes, une donnée qui n'était pas accessible par les techniques classiques. J'ai ainsi pu montrer que des cellules dépourvues en Cdc14, une protéine phosphatase essentielle pour la ségrégation de l'ADN ribosomique (rDNA) et la sortie de mitose, terminaient la réplication plus tardivement que les cellules contrôles. Le fort retard de réplication du rDNA dans le mutant cdc14-1 pourrait être responsable de son défaut de ségrégation en anaphase