thesis

Réduction sélective catalytique des NOx par des composés oxygènes

Defense date:

Jan. 1, 2011

Edit

Institution:

Poitiers

Disciplines:

Abstract EN:

Lately, Diesel engines have been extensively studied because they emit lesser CO2 than gasoline engine of equivalent power, since they work in lean condition, i. E. In excess oxygen. However, they produce NOx (NO and NO2), which are pollutants hardly transformed in nitrogen in oxidizing atmosphere. The point of this manuscript is to propose a catalyst active in NOx reduction by ethanol (EtOH-SCR) at 200°C, which is the average temperature of Diesel exhaust gas. In order to answer to this problem, a catalyst known to be active at 300°C in EtOH-SCR has been chosen: Ag/Al2O3. The first part of this manuscript details the modifications made to the reference catalyst (Ag/Al2O3) in order to broaden its activity window toward low temperature. The alumina support has been modified by adding transition metals (Mn, Fe, Ti, Zn), then a second metal has been added in addition to silver over alumina (Ru, Ir, Cu, Co, Gd, In and Sc). This part shows that the Ag/Al2O3 catalyst activity is limited up to 300°C: maximum conversion of NOx to N2 (34%) is obtained with the catalyst modified with ruthenium Ag-Ru(0. 5wt%)/Al2O3. The following parts try to explain why the catalysts activity is limited at low temperature. Ethanol is mostly transformed into acetaldehyde and ethylene during the NOx reduction reaction. It has been showed that acetaldehyde and ethylene can react with NOx to yield nitrogen, but the SCR reaction with acetaldehyde begin at 300°C, whereas the reaction with ethylene starts at 550°C. Only the reaction between ethanol and NO can lead to nitrogen formation below 300°C. It is finally showed that this reaction is limited at 150°C by the ethanol activation over alumina acid-base pairs, which appears by Al2O3 dehydration at about 250°C. The reaction is then limited at 250°C because nitrates hardly react with ethanol to yield N2 below 300°C. Above 300°C, it is showed that nitrogen formation is in competition with NH3 formation.

Abstract FR:

Les moteurs Diesels connaissent un intérêt récent tout particulier car ils rejettent moins de CO2 que les moteurs essences à puissance égale, du fait qu'ils travaillent en "mélange pauvre", i. E. En excès d'oxygène. Ils présentent cependant l'inconvénient de former des NOx (NO et NO2), qui sont des polluants difficilement réductibles en azote en milieu oxydant. L'objectif de cette thèse est de proposer un catalyseur actif en réduction des NOx par l'éthanol (EtOH-SCR) à 200°C, qui est la température moyenne d'un échappement de moteur Diesel. Afin de répondre à cette problématique, un catalyseur connu pour être actif à 300°C en EtOH-SCR a été choisi : Ag/Al2O3. La première partie de ce manuscrit détaille les modifications apportées au catalyseur de référence (Ag/Al2O3) afin d'élargir sa fenêtre d'activité vers les basses températures. Le support alumine a été modifié par des ajouts de métaux de transition (Mn, Fe, Ti, Zn), puis un second métal a été ajouté en plus de l'argent sur Al2O3 (Ru, Ir, Cu, Co, Gd, In et Sc). Cette partie montre que l'activité des catalyseurs de type Ag/Al2O3 est limitée jusqu'à 300°C : le maximum de conversion des NOx en azote (34%) est obtenu avec le catalyseur modifié avec le ruthénium Ag-Ru(0,5%pds)/Al2O3. Les parties suivantes tentent d'expliquer pourquoi l'activité de ces catalyseurs est limitée à basse température. L'éthanol se transforme en acétaldéhyde et éthylène (entre autre) au cours de la réaction de réduction des NOx. Ces deux produits peuvent réagir avec les NOx pour conduire à la formation d'azote, mais la réaction de SCR avec l'acétaldéhyde ne débute qu'à 300°C, tandis que celle avec l'éthylène débute à 550°C. Seule la réaction entre l'éthanol et NO conduit à la formation d'azote avant 300°C. Il est finalement montré que cette réaction est limitée à 150°C par l'activation de l'éthanol sur les paires acides-bases de l'alumine, qui apparaissent par déshydratation de Al2O3 à environ 250°C. La réaction est ensuite limitée à 250°C car les nitrates réagissent difficilement avec l'éthanol pour former N2 avant 300°C. Au dessus de 300°C, il est montré que la formation d'azote est en compétition avec celle de NH3.