Enterobacterial type IV pili : structure, assembly and molecular function
Institution:
Sorbonne Paris CitéDisciplines:
Directors:
Abstract EN:
Many bacterial species display surface fibers to interact with the surrounding environment. Type 4 pili (T4P) are long and thin, flexible fibers involved in a variety of functions including adherence, motility, secretion, DNA uptake and biofilm formation. They are composed of thousands of copies of major pilin subunits and are assembled by a protein complex localized in the bacterial envelope. In this study we focused on the T4P from Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7. EHEC is a human foodborne pathogen that causes outbreaks of bloody diarrhea and hemolytic uremic syndrome (HUS), which can lead to a lethal outcome. EHEC T4P is composed of the major subunit PpdD and presumably in lower abundance by minor pilins PpdA, PpdB, YgdB and PpdC.This study has aimed to describe the structure of the T4P from EHEC, a representative of pili conserved in enterobacteria. Structural information provides insights that can relate to the mode of action of these organelles. In this project we addressed the structure of the EHEC T4P and the molecular basis of their assembly. Due to the flexible and non-covalent nature of T4P fibers we used an integrative approach to combine information obtained by cryo-electron microscopy, NMR spectroscopy, molecular modeling and biochemical analyses to obtain a high quality structure of the EHEC T4P. In addition, from functional, interaction and mutational analysis we gained insights into the molecular interactions between the pilin subunits present in the fiber. The T4P are poorly studied in enterobacterial systems; despite the presence of all the necessary genes, the conditions that trigger their expression in E. coli are unknown. In addition, in E. coli the T4P-related genes are coregulated with genes encoding the DNA uptake machinery, suggesting their role in natural competence. In order to facilitate the study of T4P, we achieved a functional reconstitution of the EHEC T4PS in the non-pathogenic E. coli K-12 through the controlled expression of the T4P genes cloned together as a single artificial operon. With this accomplishment we were able to perform comparative analyses between pili assembled by a heterologous system (the Type 2 secretion system from another enterobacterium, Klebsiella oxytoca) and by the cognate EHEC T4P assembly system. CryoEM analysis showed that these pili are identical, indicating that major pilins are the key determinants of fiber structure and symmetry. The results also led us to obtain important insights into pilus assembly and to characterize PpdD interactions with the assembly machinery. These interactions and PpdD dimerization were required for pilin stability prior to pilus assembly, highlighting important early steps involving targeting of subunits to the assembly machinery. Together, these results lay the foundations for future structural and functional studies of enterobacterial T4P.
Abstract FR:
Nombreuses espèces bactériennes présentent des fibres à leur surface qui leur permettent d’interagir avec leur environnement. Les pili de type 4 (PT4) sont des fibres longues, fines et flexibles, impliquées dans des fonctions multiples telles que l'adhérence, la motilité, la sécrétion, l'import d'ADN et la formation des biofilms. Ils sont composés de milliers de copies de sous-unité majeure de piline et sont assemblés par un complexe protéique localisé dans l'enveloppe bactérienne. Dans cette étude, nous nous sommes intéressés aux PT4 chez Escherichia coli entérohémorragique (EHEC) de sérotype O157: H7. EHEC est un agent pathogène humain d'origine alimentaire qui provoque des épidémies de diarrhées hémorragiques et/ou des atteintes rénales sévères appelées syndrome hémolytique et urémique (SHU), qui peuvent être mortelles. Les PT4 chez EHEC sont composés de la sous-unité majeure PpdD et probablement des pilines mineures PpdA, PpdB, YgdB et PpdC en plus faible abondance.Dans cette étude notre objectif était de décrire la structure des PT4 chez EHEC, en tant que modèle de la famille des pili conservés chez les entérobactéries. La structure est indispensable pour décrire le mode d'action de ces organites. Dans cette étude, nous avons abordé la structure de l'EHEC T4P ainsi que les bases moléculaires de leur assemblage. En raison de la nature flexible et non covalente des fibres T4P, nous avons utilisé une approche intégrative incluant des données obtenues par cryo-microscopie électronique (cryo-ME), spectroscopie RMN, modélisation moléculaire et analyses biochimiques pour déterminer la structure des pili PpdD. Les interactions entre les sous-unités de pilines présentes dans la fibre ont été étudiées par mutagenèse dirigée et analyses fonctionnelles. Ces expériences nous ont permis d’identifier les résidus de PpdD essentiels pour l’assemblage des pili.Les T4aP ont été peu étudiés chez les entérobactéries. Bien que tous les gènes nécessaires soient présents chez E. coli, les conditions induisant leur expression restent inconnues. Cependant, les gènes codant pour les PT4 chez E. coli sont co-régulés avec des gènes codant pour la machinerie impliquée dans l’import d'ADN, ce qui suggère leur rôle dans la compétence naturelle. Afin de faciliter l'étude de PT4, nous avons réalisé une reconstitution fonctionnelle de l'EHEC T4PS chez E. coli K-12 non pathogène par l'expression contrôlée des gènes de PT4 clonés dans un opéron artificiel. Cette construction nous a permis de réaliser des analyses comparatives d'assemblage des pili par le système hétérologue (système de sécrétion de type 2 provenant d'une autre entérobactérie, Klebsiella oxytoca) et le système d'assemblage propre aux PT4 chez EHEC. Leur analyse par cryo-ME a montré que les pili assemblés sont identiques, indiquant ainsi que ce sont les pilines majeures qui déterminent la structure et la symétrie des fibres. Les résultats des études comparatives ont également apporté des informations importantes sur l'assemblage des pili. Nous avons identifié des composants de la machinerie d'assemblage qui interagissent avec la piline majeure PpdD. La formation des dimères de PpdD et ses interactions spécifiques avec les facteurs d’assemblage semblent importantes pour la stabilité de la piline avant l'assemblage en pilus. L’ensemble de nos résultats consitutent des bases pour de futures analyses structurales et fonctionnelles des pili chez les entérobactéries.