Valorisation du dioxyde de carbone par couplage plasma non-thermique et catalyse
Institution:
PoitiersDisciplines:
Directors:
Abstract EN:
The two main greenhouse gases emitted by human activities are carbon dioxide and methane. Within the context of the current environmental crisis, it has become vital to find a method to valorise these gases. Therefore, this thesis has been conducted to be a part of this process: CO2 and CH4 valorisation. To this end, dry reforming of methane was carried out by coupling non-thermal plasma and catalysts. Metal-based catalysts, such as Ni/Al2O3, are usually used for plasma-catalyst. However, the results are often dissimilar, and even contradictory, as far as conversions and selectivities are concerned. In order to better understand the reasons behind this heterogeneity, the influence of the nature of the solid was studied. For this purpose, metal oxides, such as γ-Al2O3, α-Al2O3, MgO, CaO, La2O3, ZnO, CeO2, SiO2, BaO, TiO2, and a zeolite, were selected because of their respective physicochemical properties (permittivity, acidity, basicity, specific surface). These oxides were submitted to identical tests with identical operational conditions, e.g. a dielectric barrier discharge reactor (DBD), 8W power (800 Hz frequency, 13 and 16 kV tension), a total output of 40 mL.min-1 and a CH4/CO2=0,5 ratio.The study of the physical characteristics of catalysts highlighted the impact of the material’s permittivity or of the size of its grains on the discharge. A high dielectric constant hindered the reaction. When TiO2 (εr=2903) was found in the discharge, it led to a decline in CH4 and CO2 conversions, as they decreased from respectively 20 and 9% without catalyst, to 5 and 2% with TiO2. Furthermore, when grains were too large, there was less surface accessible to plasma, which led to a fall in the reagents’ conversions. Indeed, they dropped from respectively 30 and 15% for CH4 and CO2 for small-sized grains (250-355µm), to 24 and 11% for the largest grains (800-1000µm). In addition to this, the study of the catalysts’ chemical properties showed how basicity influenced the conversions of carbon dioxide. It seemed that when there was a great number of basic sites in a solid, CO2 adsorption was likely to be better. Furthermore, a more detailed study was carried out by coupling calcium oxide with non-thermal plasma. Indeed, the former does not only have a low permittivity, but also a high number of basic sites. Structural and textural modifications appeared after plasma. This was shown by examining the influence of the CH4/CO2 ratio and of the temperature on CaO. When there was a CH4/CO2 = 2 ratio, for a temperature of 300°C, the production of water (reverse water-gas shift reaction) tended to result in the formation of Ca(OH)2 and CaCO3.When water (0,1g.h-1) was added to the reaction mixture, CaO hydroxylation and Ca(OH)2 carbonatation were observed. Furthermore, hydrated calcium hydroxide (Ca(OH)2+ 18% H2O) carbonatation is more likely to occur under plasma. The analysis of gases at the outlet by a mass spectrometer revealed an oscillatory phenomenon associated with CO2 adsorption. A reaction pathway, during which CO2 and H2O adsorption and elimination occur successively, was therefore put forward. A low-energy plasma (4W) is likely to cause carbonatation, as the solid is originally composed of 0,9Ca(OH)2, 0,9 H2O, 0,1 CaCO3, and is made of 0,1Ca(OH)2, 0,9CaCO3 after plasma. Thus, applying a non-thermal plasma seems to encourage CO2 diffusion at the core of Ca(OH)2+ 18% H2O. Carbonatation is a method to store CO2 but it is a slow process, which is often hindered by CO2 diffusion. In this study, plasma was proved to be a highly interesting process, provided that its efficiency could be increased.
Abstract FR:
Le dioxyde de carbone et le méthane représentent les deux principaux gaz à effet de serre produits par l’Homme. Dans le contexte environnemental actuel, leur valorisation constitue un enjeu scientifique majeur. Cette thèse s’inscrit ainsi dans cet objectif de valorisation du CO2 et du CH4. Pour cela, la réaction de reformage sec du méthane a été réalisée par couplage plasma non-thermique et catalyse. De façon générale, des catalyseurs à base de métaux, comme Ni/Al2O3, sont utilisés lors du couplage plasma-catalyse. Toutefois, les résultats obtenus en termes de conversions et de sélectivités sont très hétérogènes, voire contradictoires. Afin de mieux comprendre les origines de cette disparité, l’influence de la nature du solide présent dans la zone plasma a été étudiée. Pour ce faire, divers oxydes métalliques, tels que γ-Al2O3, α-Al2O3, MgO, CaO, La2O3, ZnO, CeO2, SiO2, BaO, TiO2 ou encore une zéolithe, ont été sélectionnés pour leurs propriétés physico-chimiques distinctes (permittivité, acidité, basicité, surface spécifique). Ces oxydes ont été testés dans des conditions opératoires identiques en utilisant un réacteur plasma à barrière diélectrique (DBD), une puissance de 8W (fréquence 800 Hz, tension de 13 et 16 kV), et un débit total de 40 mL.min-1, l’hélium étant le constituant majoritaire : 75% volumique.L’étude des caractéristiques physiques des catalyseurs a par exemple permis de souligner l’impact de la permittivité ou de la taille des grains des différents matériaux sur la décharge. Une constante diélectrique élevée n’est pas favorable à la réaction. La présence de TiO2 (εr=2903) dans la décharge entraîne une chute des conversions du CH4 et du CO2, qui passent respectivement de 20 et 9 % à vide, à 5 et 2% avec TiO2. Par ailleurs, il a été montré que la présence de grains trop volumineux réduit la surface accessible au plasma, ce qui entraîne une diminution des conversions des réactifs. Ces dernières passent de 30 et 15% respectivement pour CH4 et CO2 pour des grains de petite taille (250-355µm), à 24 et 11% pour les plus gros grains (800-1000µm). De plus, l’étude des propriétés chimiques des catalyseurs a mis en avant l’influence de la basicité sur les conversions du dioxyde de carbone. Il semble que plus le solide possède de sites basiques, plus l’adsorption du CO2 est favorisée. En outre, une étude plus détaillée a été réalisée en couplant plasma et oxyde de calcium, car ce dernier possède non seulement une faible permittivité (εr=2,1), mais également un nombre important de sites basiques. L’influence du ratio CH4/CO2 et de la température sur CaO a permis de mettre en évidence l’apparition de modifications structurales et texturales après décharge plasma. Il a été montré que pour un ratio CH4/CO2 = 2, et à 300°C, la formation d’eau (réaction inverse de gaz à l’eau) favorise la formation de Ca(OH)2 et CaCO3. L’ajout d’eau (0,1g.h-1) au mélange réactionnel a permis de mettre en avant l’hydroxylation de CaO et la carbonatation de Ca(OH)2. Par ailleurs, la carbonatation de l’hydroxyde de calcium hydraté (Ca(OH)2+ 18% H2O) est favorisée sous plasma. L’analyse des gaz en sortie par spectromètre de masse fait ressortir un phénomène d'oscillation lié à l’adsorption du CO2. Un mécanisme réactionnel, au cours duquel l’élimination et l’adsorption de CO2 et H2O s’effectuent successivement, a été proposé. Un plasma peu énergétique (4W) favorise la carbonatation du solide puisque sa composition est initialement : 0,9Ca(OH)2, 0,9 H2O, 0,1 CaCO3 et devient 0,1Ca(OH)2, 0,9CaCO3 après plasma. Par conséquent, il semble que l’application d’un plasma non-thermique favorise la diffusion du CO2 au cœur de Ca(OH)2+ 18% H2O. En outre, la carbonatation de solides, qui constitue une méthode de stockage du CO2, est un procédé lent et le plus souvent limité par la diffusion du dioxyde de carbone. Dans cette étude, il a été montré que le plasma pourrait présenter un grand intérêt, à condition d’augmenter l’efficacité du procédé.