thesis

Synthesis and characterization of nanoparticles for ethanol oxidation in direct ethanol fuel cell (DEFC)

Defense date:

Jan. 1, 2010

Edit

Institution:

Poitiers

Disciplines:

Authors:

Abstract EN:

The direct ethanol fuel cell (DEFC) is a very promising power source for low power applications since ethanol is very attractive fuel regarding its high power energy density, low working temperature, non toxicity and natural availability. However, there are some problems that have to be overcome if we wish to see DEFCs in our everyday life. For the anode catalyst, there are two main drawbacks that cause problems with the DEFC, namely, expensive noble metals with high loading and long-term stability. On the other hand, an active anode catalyst for ethanol oxidation should be breaking the C-C bond to achieve maximum efficiency. Currently, the best binary catalyst for ethanol oxidation is PtSn; however, the addition of Sn to Pt catalyst inhibits the breaking the C-C bond. This is not favorable for ethanol energy conversion efficiency and fuel cell utilization. On the other hand, further improvement in stability is needed. So far, a ternary PtSnRu catalyst seems to be the most promising for use in DEFC, however, an alternative ternary catalyst should be considered together with cost-saving effects. The aim of this thesis is to develop alternative anode catalysts with high electrochemical activity in direct ethanol fuel cell applications. For this purpose, carbon supported (Vulcan XC72) monometallic Pt, bimetallic PtM(M=Sn, Co, Ni, Rh, Pd) and trimetallic PtSnM(M=Ni, Co, Rh, Pd) catalysts were synthesized by Bönnemann’s colloidal precursor coreduction method. In order to evaluate the relationship between the catalyst structure and catalyst activity, various microscopic and spectroscopic characterization techniques were employed such as X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Element Energy Dispersive Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS) and in-situ Fourier Transform Infrared Spectroscopy (FTIR). Electrochemical characterization of the catalysts regarding their onset potentials, activities and current densities towards ethanol oxidation were determined by linear sweep voltammetry. Furthermore, anode performance tests in a single ethanol fuel cell (DEFC) were also employed. The addition of a Ni or Co to PtSn catalyst showed the best catalytic activity for ethanol oxidation with low onset potential. Spectroscopic characterization results revealed that the presence of Ni and Co metals in the bulk composition lead to a lower energy levels of the Pt d states on the catalyst surface and weaken the Pt-CO bond. On the other hand, separate SnO2 phase can oxidize adsorbed CO-like intermediates. PtSnNi and PtSnCo ternary systems with less noble metal in the catalyst showed a higher anode performance in direct ethanol fuel cell operation.

Abstract FR:

Les piles à combustible à membrane échangeuse de protons à oxydation directe de l'éthanol (DEFC, Direct Ethanol Fuel Cell) sont une technologie prometteuse pour les applications de faible puissance au regard de la grande densité d'énergie contenue dans ce combustible, de la faible température de fonctionnement, de la non toxicité et de la disponibilité de ce composé. Cependant, quelques problèmes sont à surmonter si nous souhaitons voir émerger cette technologie pour le grand public. Pour le catalyseur situé à l’anode, deux inconvénients majeurs posent problème avec les DEFCs, à savoir le coût des métaux nobles utilisés à fort taux de charge et la stabilité du catalyseur sur le long terme. De plus, un catalyseur anodique actif doit pouvoir rompre la liaison carbone-carbone afin d'obtenir un rendement maximal. Actuellement, le meilleur catalyseur bimétallique est l'association PtSn; cependant, l'addition d'étain au platine inhibe la rupture de la liaison C-C. Ceci n'est pas favorable quant à une utilisation pour les piles à combustible et, de plus, un accroissement de la stabilité de ce type de catalyseur est requis. Aussi, le catalyseur tri-métallique PtSnRu semble prometteur pour une utilisation dans les DEFCs mais un catalyseur tri-métallique alternatif d'un moindre coût est nécessaire. Ainsi, un catalyseur tri-métallique présentant une forte activité et une grande stabilité ainsi qu'une proportion plus faible de métaux nobles doit être développé pour dépasser les limitations actuelles. Le cœur de ce projet de thèse a été de développer de nouveaux catalyseurs anodiques permettant de donner un aperçu de la manière dont ces problèmes et limitations peuvent être surmontés. Afin de réaliser cela, de nombreux catalyseurs bimétalliques à base de platine et tri-métalliques ont été synthétisés par différentes méthodes afin de préparer le meilleur catalyseur possible. Il a été vu que la méthode de synthèse choisie pour préparer le catalyseur joue un rôle crucial sur les performances catalytiques mesurées. Les catalyseurs préparés via le « précurseur colloïdal de Bönneman » ont permis de déterminer la procédure la plus efficace pour le développement de catalyseurs hautement actifs pour l'oxydation de l'éthanol dans les DEFCs. Un système ternaire basé sur l'association PtSn a été envisagé avec une réduction de la fraction de métaux. Pour cela, des métaux de transition tels que Ni ou Co ont été incorporés dans les matériaux étudiés. D'autre part, l'addition d'autres métaux nobles (Rh et Pd) au couple PtSn a également été étudiée car un plus grand rendement était attendu. Les résultats de ce manuscrit montrent que les catalyseurs supportés sur carbone Pt80Sn10Ni10 et Pt80Sn10Co10 présentent des densités de courant importantes ainsi que des potentiels d'initiation de l'oxydation faibles, ce qui en fait les catalyseurs les plus prometteurs de l'ensemble de ceux qui ont été synthétisés. Les caractérisations physiques de ces catalyseurs révèlent de plus faibles niveaux d'énergies de la couche d des atomes de platine de surface ainsi qu'une plus faible énergie de la liaison Pt-CO. Aussi, la présence de SnO2 de manière isolée dans ces catalyseurs pourrait permettre une meilleure oxydation des intermédiaires réactionnels carbonylés. Avec une telle formulation de catalyseur, de plus grandes performances ont été obtenues lors de test en pile avec une quantité inférieure de métaux nobles.