thesis

Non-codings RNAs, regulators of gene expression in Arabidopsis thaliana root developmental plasticity

Defense date:

June 1, 2016

Edit

Disciplines:

Directors:

Abstract EN:

In the last years, high-throughput sequencing techniques have made possible to identify thousands of noncoding RNAs and a plethora of different mRNA processing events occurring in higher organisms. This led to a better understanding of different regulatory mechanisms controlling gene expression. Long noncoding RNAs (lncRNAs) are emerging as key players in the regulation of varied developmental processes. They can act directly in a long form by lncRNA-protein interactions or be processed into shorter small si/miRNAs, leading to mRNA cleavage, translational repression or epigenetic DNA/chromatin modification of their targets. In this study, we aim to understand the mechanism of action of lncRNAs in plant development. Initially, I contributed to the analysis of the action of the APOLO lncRNA in chromatin topology regulation. Then, I focused my work on the lncRNA ASCO (Alternative Splicing COmpetitor) that interacts with NSRs (Nuclear Speckles RNA-binding Proteins) to modulate the splicing pattern of NSR-regulated mRNA targets. Auxin treatment induces NSRb and represses ASCO expression in roots. The nsra/b double mutant and ASCO overexpressing lines treated with auxin are partially impaired in lateral root formation. Using a new bioinformatic tool called “RNAprof”, we detected 1885 differential RNA processing events genome-wide in auxin-treated nsra/b mutants compared to WT. Among them, we identified ARF19, a key regulator of auxin signaling in lateral root initiation and development. I demonstrated that ARF19 is directly bound by both NSRs and that in the nsra/b double mutant ARF19 is alternatively polyadenylated leading to a short transcript isoform. Furthermore, among the transcriptionally deregulated genes in the nsra/b mutant plants, I identified an important group related to ethylene response. I further showed that several of these genes are also deregulated in the arf19-1 and arf19-2 mutants plants in response to auxin, supporting a role of ARF19 in the auxin-ethylene crosstalk. NSRb is also induced by ethylene and the inhibition of ethylene synthesis by AVG rescues the nsra/b double mutant lateral root phenotype in response to auxin. Moreover, AVG and ASCO overexpression lead to increased accumulation of the ARF19 short isoform. Altogether, this study shed new light on the role of the lncRNA ASCO in the regulation of RNA processing by hijacking NSRs and the capacity of non-coding RNAs to modulate splicing.

Abstract FR:

Les techniques de séquençage à haut-débit développées ces dernières années ont permis d'identifier des milliers d’ARN non-codants et des événements tels que l’épissage ou l’édition. Cette approche est à l’origine d’une meilleure compréhension des mécanismes régulant l'expression des gènes. Les longs ARN non-codants (lncARN) ont ainsi émergé comme des acteurs clés de la régulation de divers processus développementaux. Ils agissent soit directement sous leur forme longue par des interactions lncARN-protéine(s) soit après une étape de maturation qui génère des siARN ou des miARN régulateurs, menant à l’extinction génique par clivage des ARNm, la répression de la traduction ou en entrainant des modifications épigénétiques (ADN/chromatine) de leurs cibles. L’objectif de cette thèse était d’élucider les mécanismes d'action de lncARNs dans le développement de la plante. J'ai contribué à l'analyse de l'action du lncARN APOLO dans la régulation de la topologie de la chromatine chez Arabidopsis thaliana. Ensuite, j’ai concentré mes efforts sur le lncARN ASCO (Alternative Splicing COmpetitor) qui interagit avec les protéines NSRs (Nuclear Speckles RNA-binding Proteins) et participent au patron d’épissage de certains gènes cibles. Lors d’un traitement par l’auxine, NSRb est induit alors qu’ASCO est réprimé dans les racines. Le même type de traitement, chez le double mutant nsra/b et les lignées surexprimant ASCO, entraine déficience partielle dans la formation des racines latérales. En utilisant un nouvel outil bio-informatique appelé "RNAprof", nous avons détecté 1885 ARN différentiellement maturés entre le mutant nsra/b et la lignée sauvage traités à l’auxine. Parmi ces gènes, nous avons identifié ARF19, un régulateur clé de la voie de signalisation de l’auxine au cours de l'initiation et le développement de la racine. J’ai démontré qu'ARF19 interagit directement avec les NSRs et qu’il est différentiellement polyadénylé dans le double mutant nsra/b, conduisant à une isoforme plus courte du transcrit ARF19. D’autre part, parmi les gènes dérégulés de manière transcriptionnelle chez le mutant des gènes impliqués dans la signalisation par l’éthylène ont été identifiés. J’ai ensuite montré que plusieurs de ces gènes sont aussi dérégulés dans les plantes mutantes arf19-1 et arf19-2 en réponse à l’auxine, soutenant un rôle d'ARF19 dans la réponse croisée entre l’auxine et l’éthylène. Le gène NSRb est induit par l'éthylène et l'inhibition de la synthèse d'éthylène par l'AVG complémente le phénotype de racine latérale du mutant nsra/b en réponse à l’auxine. De plus, l'AVG et la surexpression d’ASCO augmentent l'accumulation de l’isoforme courte d’ARF19. Cette étude met en avant la capacité du lncARN ASCO à moduler l’épissage par le détournement des NSRs et la capacité des ARN non-codants à moduler l’épissage.