thesis

Etudes des G-quadruplexes : impact de la stabilisation par des ligands en tant qu'agents anti-cancéreux et identification des protéines associées régulant leur métabolisme

Defense date:

Oct. 15, 2020

Edit

Institution:

Toulouse 3

Disciplines:

Abstract EN:

G-quadruplexes (or G4) are non-canonical structures of nucleic acid formed from guanine-rich sequences. G4 are stable structures, present throughout the genome and could be folded into different conformations. G4 formation can regulate, positively or negatively, different cellular processes such as transcription, replication, RNA transactions and mitochondrial mechanisms. All these processes require the recruitment of proteins able to modulate the formation of these structures. Indeed, some proteins, such as BLM, WRN or DHX36 helicases, are able to unwind G4 while others, like nucleolin (NCL), bind to and stabilize G4. Finally, G4 ligands, small molecules stabilizing G4, can impact various processes in which G4 are involved; in particular, they can cause repression of oncogene expression and lead to genomic instability. Thus, G4 ligands are considered to be potential anti-cancer agents. My thesis work focuses on several issues concerning G4: 1/ the improvement of G4 ligands and their characterization; 2/ the deciphering of the mechanisms inducing genomic instability following G4 stabilization by ligands; 3/ the identification of proteins able to bind to G4 (or GBPs for "G4 Binding Proteins"). Through biochemical and biophysical experiments, I have participated in the characterization of porphyrin-derived ligands. In the case of the AuMA ligand, I showed an increase in both G4 stabilization capacity and G4 specificity, compared to other porphyrin-derived molecules. This molecule therefore represents a better therapeutic potential than TMPyP4, a widely characterized ligand from which it is derived. I have also studied the genomic instability due to G4 stabilization using the pyridostatin ligand and the CX5461 ligand, currently in Phase II of a clinical trial. These ligands induce DNA double-strand breaks (or DSBs) dependent on transcription by RNA polymerase II and partly due to the transcriptional pausing. DSBs are initiated by the activity of Topoisomerases II, enzymes involved in the resolution of DNA topological stresses due to transcription and replication. These results show the significant role of transcription in the induction of genomic instability and open up new therapeutic approaches in the treatment of cancers in which these proteins are overexpressed or by combining them with other chemotherapies such as etoposide to increase their cytotoxic potential. I have studied G4-binding proteins using constrained structures, blocked in a particular conformation, by developing a protocol for the detection of GBPs through Pull-Down experiments followed by mass spectrometry analysis. These results, validated by the binding to G4 of proteins already identified and characterized such as WRN, DHX36 or CNBP, allow the identification of 425 GBP. Thus, I have highlighted new GBPs involved in various cellular processes such as replication, DNA repair, transcription and RNA metabolism. Aside, the study of CNBP protein in a zebrafish model has shown that the regulation of G4 in vivo affects transcription and embryonic development, reinforcing the role of G4 in whole living organisms. My work contributes to extend the knowledge of G4 and their ligands, particularly the mechanisms of action of G4 during transcription, and is opening up new therapeutic perspectives.

Abstract FR:

Les G-quadruplexes (ou G4) sont des structures non canoniques des acides nucléiques formées à partir de séquences riches en guanines. Les G4 sont des structures stables, présentes sur l'ensemble du génome et qui peuvent adopter différentes conformations. La formation des G4 peut réguler, de façon positive ou négative, différents processus cellulaires tels que la transcription, la réplication, les transactions des ARN et les mécanismes mitochondriaux. L'ensemble de ces processus nécessite le recrutement de protéines capables de moduler la formation de ces structures. Certaines protéines, telles que les hélicases BLM, WRN ou DHX36, sont capables de dérouler les G4 alors que d'autres, comme la nucléoline (NCL), se lient aux G4 et les stabilisent. Enfin, des molécules capables de stabiliser les G4 appelées ligands de G4, peuvent impacter divers processus dans lesquels sont impliqués les G4 ; en particulier, ils peuvent entrainer la répression de l'expression d'oncogènes et mener à de l'instabilité génomique. Ainsi, les ligands de G4 sont considérés comme de potentiels agents anti-cancéreux. Mes travaux de thèses s'articulent autour de plusieurs problématiques concernant les G4 : 1/ l'amélioration des ligands de G4 et leur caractérisation ; 2/ le décryptage des mécanismes induisant de l'instabilité génomique suite à la stabilisation des G4 par des ligands ; 3/ l'identification des protéines capables de se lier aux G4 (ou GBP pour " G4 Binding Proteins "). Par des expériences biochimiques et biophysiques, j'ai participé à la caractérisation de ligands dérivés de porphyrine. Dans le cas du ligand AuMA, j'ai montré une augmentation à la fois de la capacité de stabilisation des G4 et de la spécificité envers les G4, par rapport à d'autres molécules dérivées de porphyrine. Cette molécule représente donc un meilleur potentiel thérapeutique que le TMPyP4, ligand largement étudié, dont elle est dérivée. J'ai également étudié l'instabilité génomique due à la stabilisation des G4 grâce à l'utilisation du ligand pyridostatine et du ligand CX5461, actuellement en phase II d'un essai clinique. Ces ligands induisent des cassures double brin de l'ADN (ou CDB) dépendantes de la transcription par l'ARN polymérase II et partiellement dues à la pause transcriptionnelle. Les CDB sont initiées par l'activité des Topoisomérases II, enzymes impliquées dans la résolution des stress topologiques de l'ADN dus à la transcription et à la réplication. Ces résultats montrent le rôle important de la transcription dans l'induction de l'instabilité génomique et ouvrent de nouvelles pistes thérapeutiques, dans le traitement de cancers dans lesquels ces protéines sont surexprimées ou par la combinaison avec d'autres chimiothérapies telles que l'étoposide afin d'en augmenter le potentiel cytotoxique. J'ai étudié les protéines se liant aux G4 grâce à des structures contraintes, bloquées dans une conformation particulière, en mettant au point un protocole de détection des GBP par des expériences de "Pull-Down" suivie d'une analyse par spectrométrie de masse. Ces résultats, validés par la liaison aux G4 de protéines déjà identifiées et caractérisées telles que WRN, DHX36 ou encore CNBP, ont permis l'identification de 425 GBP. Ainsi, j'ai mis en évidence de nouvelles GBP impliquées dans divers processus cellulaires tels que la réplication, la réparation de l'ADN, la transcription et le métabolisme des ARN. De façon annexe, l'étude de la protéine CNBP dans un modèle animal a permis de montrer que la régulation des G4 in vivo impacte la transcription et le développement embryonnaire, renforçant le rôle des G4 dans des organismes vivants. Mes travaux contribuent à étendre les connaissances sur les G4 et leurs ligands, particulièrement celles portant sur les mécanismes d'action des G4 pendant la transcription, et ouvrent de nouvelles perspectives thérapeutiques.