Étude des mécanismes moléculaires de l'évolution du génome chez la levure bourgeonnante Saccharomyces cerevisiae
Institution:
Université Côte d'AzurDisciplines:
Directors:
Abstract EN:
Genomes are progressively modified during their evolution leading to gene content variation, recombination, mutation and genetic exchange among species/subpopulations. The advent of next-generation sequencing technologies and their cost reduction increased the number of genomes available for evolutionary studies, opening the way to understand the molecular mechanisms involved in genome evolution. In this work, I used the budding yeast Saccharomyces cerevisiae as model organism to investigate two important aspects of genome evolution: the origin of interspecies introgressions and telomere evolution.An introgression is the flow of genetic material between populations and it results from ancient hybridization events followed by repeated backcrossings with one of the parental populations. In the first part of my PhD, I studied a lineage of S. cerevisiae strains isolated from the wastewater of olive oil production (Alpechin), carrying abundant introgressions from the sister species S. paradoxus, and a natural S. cerevisiae/S. paradoxus hybrid, with 50% genome contribution from each parent, carrying abundant regions of loss-of-heterozygosity (LOH). I derived an accurate genetic map of LOHs in the hybrid and compared their position to the introgressions in the Alpechin strains, to infer their evolutionary relations. I found that LOH and introgressions overlapped and shared the same S. paradoxus ancestry, indicating that LOHs are the direct origins of introgressions in the Alpechin lineage. I proposed a model for the origin of yeast introgressions in which LOH regions allow interspecies hybrids to overcome sterility, which constitutes the main barrier to introgressions' onset in reproductively isolated species, such as yeasts, and validated the reliability of my model using experimental and computational techniques.In the second part of my PhD, I studied the extent of telomere diversity in S. cerevisiae and the outcome of chronic telomeric stress on cellular fitness. In a first project, I estimated telomere length in over 900 strains isolated around the world and observed remarkable variation. Strains isolated in wild habitats had shorter telomeres than domesticated ones. I performed a genome-wide association study that revealed novel genetic variants possibly regulating telomere length. I also pinpointed private loss-of-function mutations in known telomere length maintenance genes that could explain the very long/short telomeres of certain lineages. Moreover, I used multiple phenotypic datasets available for this collection to look for non-genetic factors associated to telomere length variation, and discovered an association between mitochondrial metabolism and telomeres in wild strains.In a second project, I performed experimental evolution of engineered yeasts synthetizing human telomeric DNA repeats at their chromosome-ends. I evolved telomere-humanized strains through mutation accumulation lines (MALs) to minimize selection, and I characterized the detrimental effects caused by telomeres' reshaping. During MALs, humanized yeasts gradually slowed their growth, shortened chronological lifespan and had higher mutation rate and genome instability. Next, I submitted MALs to adaptive evolution by multiple serial transfers (STs) of large population sizes, to map mutations that counteract their fitness decline. After multiple STs, most humanized lines recovered fitness thanks to the independent occurrence of mutations in the DNA-damage response pathway. Overall, my work contributed to elucidate the molecular mechanisms driving genome evolution, by providing a plausible model for introgression evolution in reproductively isolated species and by giving an unprecedented overview of the impact of the variation of telomere DNA length and sequence on global organismal fitness.
Abstract FR:
L'évolution du génome consiste en la modification progressive de ce dernier au fil du temps et résulte de la variation des gènes dans leur ensemble, des mutations, des recombinaisons et échanges génétiques entre populations. L'essor des technologies de séquençage de nouvelle génération ainsi que la réduction de leur coût ont permis d’augmenter le nombre de génomes disponibles, permettant d’élucider les mécanismes moléculaires impliqués dans leur évolution. Dans ce travail, j'ai utilisé la levure bourgeonnante Saccharomyces cerevisiae pour étudier deux aspects fondamentaux de l'évolution du génome: l'origine des introgressions inter-espèces et la diversité des télomères.Une introgression est une insertion de matériel génétique provenant d’une population dans une autre. Ce phénomène naît d'événements d'hybridation suivis de rétrocroisements répétés avec l'une des populations parentales. Dans la première partie de ma thèse, j'ai étudié une lignée de S. cerevisiae isolée à partir des eaux usées de la production d'huile d'olive (Alpechin), qui comprend d'abondantes introgressions de l'espèce sœur S. paradoxus, ainsi qu’une souche hybride S. cerevisiae/S. paradoxus caractérisée par des nombreuses régions de perte d'hétérozygotie (LOH). J'ai établi une carte génétique détaillée des LOHs dans la souche hybride et comparé leur position aux introgressions dans les souches d'Alpechin pour déterminer leurs relations. J'ai constaté que LOHs et introgressions se chevauchaient et provenaient de l’ascendance de S. paradoxus, indiquant que les introgressions dans la lignée d’Alpechin découlent directement des LOHs. J'ai proposé un modèle pour expliquer l'origine des introgressions chez la levure selon lequel les LOHs permettent aux hybrides inter-espèces de surmonter leur stérilité et j’ai validé la fiabilité de ce postulat à l'aide d’approches expérimentales et informatiques.Dans la deuxième partie de ma thèse, j'ai caractérisé la diversité des télomères chez S. cerevisiae et l’effet d’un stress télomérique sur le fitness cellulaire. Premièrement, j'ai estimé la longueur des télomères dans plus de 900 souches isolées à travers le monde et constaté une vaste hétérogénéité, bien que les souches issues d’habitats naturels présentent des télomères plus courts que celles issues de l’agroalimentaire. J'ai ensuite réalisé une étude d'association pangénomique qui a permis d’identifier des variants génétiques susceptibles de moduler la longueur des télomères. De plus, j'ai identifié des mutations délétères dans des gènes connus pour influencer la longueur des télomères. J'ai aussi utilisé un ensemble de données phénotypiques pour déterminer si certains facteurs non génétiques sont associés à la variation de longueur des télomères, et j’ai ainsi pu constater une connexion entre le métabolisme mitochondrial et les télomères dans les souches naturelles.Deuxièmement, j'ai étudié l’effet d’un stress télomérique chronique chez des levures modifiées avec des répétitions télomériques humaines. J'ai fait évoluer ces levures «humanisées» sur plusieurs générations par le biais de lignées cellulaires non-sélectives et j’ai observé un ralentissement de la vitesse de division et de la longévité, parallèlement à une augmentation du taux de mutations. Enfin, j'ai procédé à une expérience d’évolution adaptative pour permettre l’émergence de mutations bénéfiques qui contrecarrent le déclin de fitness des levures «humanisées». Après évolution, la plupart des lignées ont retrouvé leurs caractéristiques originelles grâce à l'apparition de mutations spécifiques en lien avec la réponse aux dommages de l'ADN.Dans l'ensemble, mes travaux ont permis d’établir une nouvelle hypothèse expliquant l’origine des introgressions chez les espèces reproductivement isolées et de même ont permis de caractériser la diversité et l’instabilité des télomères à une échelle sans précédent, contribuant à l’élucidation des mécanismes moléculaires impliqués dans l’évolution des génomes.