Brain-Machine Interfaces : from retinal network reconstruction to retinal implants
Institution:
Paris 6Disciplines:
Directors:
Abstract EN:
Brain-Machine Interfaces consist in the direct interfacing of a nervous tissue onto an electronic device. In vitro interfaces are expected to outperform computer calculations by achieving parallel information processing within neural networks. Applying electrical stimulations, in vivo brain-machine interfaces aim at assisting, rehabilitating or repairing cognitive or sensory-motor functions. Either for data analysis or information transfer, the main challenge of these interfaces relies in the cell/material interactions. Particularly in the case of retinal prosthetics, the current resolution remains insufficient to allow patients to read complex texts, to perform locomotion tasks in a complex environment and recognize faces. However, the first clinical trials showed encouraging results in blind patients, even though the restored visual acuity is still below legal blindness. During my PhD, we have worked on the biocompatibility of new semi-conducting materials, the functionalization and configuration of electrodes for retina-machine interfaces, both in vitro and in vivo. The first part of my work consisted in reconstructing a retinal neuronal network on a multielectrode array. We propose a novel technique to specifically address neuronal populations on pre-defined electrodes on an array, using either a specific antibody or lectine. This selection is performed from a mixed cell suspension even when selected neurons represent a minor population. This possibility to reconstruct a retinal neuronal network opens new perspectives for studying the formation and physiology of this neuronal network. The second topic of my work concerned the development of new approaches to increase the resolution and long-term stability of retinal implants. First, we demonstrated the biocompatibility of two semi-conducting carbon-based materials, graphene and diamond, with retinal neurons. These neurons could develop long neurites directly on the tested materials without any protein coating. By contrast, glial cells showed a clear preference for peptide-coated surfaces. Prior to integrating these materials on in vivo implants, we have shown the advantage of 3D structures to focalize stimulation currents onto neurons filling the implant cavities or wells. The diamond coating at the surface of these 3D soft implant prototypes does not seem to induce any major inflammation in the retina of blind rats. These works open new perspectives in the field of brain machine interfaces, neuroprostheses, with a specific emphasis on visual rehabilitation confirming the interest of diamond and graphene and proposing new strategies of cell/electrode or tissue/implant interfaces
Abstract FR:
Les interfaces cerveau/machine consistent en l’interfaçage direct d’un tissu nerveux avec unsystème électronique. Dans le cas des interfaces in vitro, il s’agit de tirer parti du traitement de l’information parallélisé au sein de ces réseaux neuronaux pour atteindre des performances de calcul supérieures à celles des processeurs classiques. In vivo, les interfaces cerveau/machine ont pour objectif d’introduire de nouvelles informations dans le circuit neuronal par stimulation électrique du tissu afin de compenser ou réhabiliter des fonctions cognitives ou sensori-motrices perdues. Qu’il soit question de recueil de données ou de transfert d’information, le défi majeur de ces interfaces se trouve au niveau des interactions cellules/matériaux. C’est notamment le cas des prothèses rétiniennes pour lesquelles la résolution actuelle est insuffisante pour permettre aux patients de lire des textes complexes, de se mouvoir dans un environnement complexe et de reconnaître des visages. Cependant, les premiers essais cliniques ont apporté des résultats encourageants chez des patients non-voyants, même si l’acuité visuelle retrouvée reste inférieure à la limite légale de cécité. Au cours de ce doctorat, nous avons travaillé sur la biocompatibilité de nouveaux matériaux semi-conducteurs, la fonctionnalisation et la distribution des électrodes pour des interfaces rétine-machine in vitro et in vivo. La première partie de mon travail a porté sur la reconstruction d’un réseau neuronal rétinien sur une matrice de multi-électrodes. Nous proposons une nouvelle technique pour sélectionner spécifiquement des populations neuronales sur des électrodes prédéfinies d’une matrice en utilisant soit un anticorps soit une lectine spécifique. Cette sélection s’opère à partir d’une suspension cellulaire mixte dans laquelle la population d’intérêt peut être faiblement représentée. Cette possibilité de reconstruire un réseau neuronal rétinien ouvre de nouvelles perspectives dans l’étude du fonctionnement et la formation de ce réseau neuronal. La seconde partie de mon travail a porté sur le développement d’approches nouvelles pour augmenter la résolution et la stabilité à long-terme des implants rétiniens. Dans un premier temps, nous avons démontré la biocompatibilité de deux matériaux semi-conducteurs à base de carbone, le graphène et le diamant, pour les neurones rétiniens. Ces derniers peuvent en effet développer de longs prolongements directement sur ces matériaux en l’absence de tout revêtement protéique. Par contre, les cellules gliales montrent une nette préférence pour les surfaces recouvertes de peptides. Intégrant ces matériaux sur des implants in vivo, nous avons d’abord mis en évidence l’avantage d’une structure 3D pour focaliser les courants de stimulation sur des neurones s’intégrant à l’intérieur de cavités ou puits. La présence de diamant à la surface de ces prototypes 3D d’implant souples n’induit pas de réaction majeure dans la rétinede rats aveugles. Ces travaux ouvrent de nouvelles perspectives pour les interfaces cerveau machine et les neuroprothèses, en particulier les implants rétiniens en confirmant l’intérêt du diamant et du graphène et en proposant de nouvelles stratégies d’interfaçage cellule/électrode ou tissu/implant