Conséquences physiopathologiques des mutations du gène ARX dans le développement cérébral
Institution:
Aix-Marseille 2Disciplines:
Directors:
Abstract EN:
Several mutations in ARX gene (aristaless-related homeobox gene) have been found in a large spectrum of infantile neurological disorders, with or without cerebral malformation, but frequently linked to epilepsy. It has been proposed that ARX, coding for a transcription factor, plays a crucial role in brain development, especially in migrating interneurons, but its involvement in nervous system development still remains to be clarified. The aim of this work has been to study the role of ARX gene and the consequences of ARX mutations on cerebral development in order to better understand these pathologies.We have first investigated the effects of an ARX polyalanine expansion, the mutation (GCG)7, which was found in pathologies without brain malformation but associated to epilepsy, such as West and Ohtahara syndromes. Analysis performed on knock-in mice for this mutation and in utero electroporated rat brains have shown that this mutation doesn’t alter neither glutamatergic and GABAergic neuronal migration, nor GABAergic neuron maturation. Interestingly, our data suggest that epilepsy observed in knock-in mice would result rather from a reorganization of glutamatergic networks. Since ARX gene is not expressed in excitatory neurons, our work suggests that epilepsy observed in knock-in mice is the consequence of developmental alterations secondary to the initial mutation, and this would have crucial therapeutic implications that require additional investigations. In vitro experiments have then allowed us to study the effect of several ARX mutations on interneurons morphology. These experiments have shown no abnormal subcellular localization of ARX protein following transfection of these different mutations in cultured interneurons. Interestingly, our data show that interneuron morphology is altered only by some mutations, particularly the P353R and the Dup24 ARX mutations. Our data underline the importance to study specifically each mutation in order to explain mechanisms generating phenotypic heterogeneity linked to ARX mutations.Taken together, this study contributes to a better understanding of ARX involvement in cerebral development and to a better characterization of pathophysiological mechanisms linked to ARX mutations.
Abstract FR:
Des mutations du gène ARX (aristaless-related homeobox gene) ont été identifiées dans un large spectre de désordres neurologiques précoces, incluant ou non des malformations cérébrales, le plus souvent associés à des épilepsies. Il est proposé que le gène ARX, codant pour un facteur de transcription, joue un rôle primordial au cours du développement cérébral, notamment sur la migration des neurones GABAergiques, mais son implication au cours de la mise en place du système nerveux central reste cependant encore mal connue. L’objectif de ce travail a été d’étudier le rôle du gène ARX et les conséquences de ses mutations sur le développement cérébral dans le but de mieux comprendre ces pathologies. Dans un premier temps, nous avons étudié l’effet d’une mutation particulière du gène, la mutation ARX(CGC)7, une expansion polyalanine retrouvée principalement dans des pathologies sans malformation cérébrale mais avec des épilepsies, tels que les syndromes de West ou d’Ohtahara. Des analyses réalisées sur une lignée de souris knock-in pour cette mutation (GCG)7 et sur des rats après électroporation in utero ont montré que la migration neuronale des neurones glutamatergiques et GABAergiques ainsi que la maturation des neurones GABAergiques ne sont pas altérées par cette mutation. De façon intéressante, nos données suggèrent que les épilepsies observées chez les souris knock-in résulteraient plutôt d’une réorganisation du réseau glutamatergique. Etant donné que le gène ARX n’est pas exprimé dans les neurones glutamatergiques, l’ensemble de ce travail suggère donc que les épilepsies chez les souris knock-in pour la mutation (GCG)7 sont la conséquence d’une altération développementale secondaire à la mutation initiale du gène, et ceci aurait d’importantes répercussions thérapeutiques qui requièrent d’avantages d’études. Des expériences nous ont ensuite permis d’étudier l’effet de plusieurs mutations du gène ARX sur la morphologie des interneurones in vitro. Celles-ci ont montré que les mutations d’ARX n’engendrent pas une localisation subcellulaire anormale de la protéine dans les interneurones en culture. De façon intéressante, ces expériences suggèrent que la morphologie des interneurones est altérée seulement par certaines mutations, notamment les mutations P353R et Dup24. Ces données soulignent ainsi l’importance d’étudier de façon spécifique chaque mutation du gène pour expliquer les mécanismes engendrant l’hétérogénéité phénotypique liée aux mutations d’ARX. L’ensemble de ces travaux contribuent à une meilleure compréhension du rôle du gène ARX dans le développement cortical et à une meilleure caractérisation des mécanismes physiopathologiques des désordres neurologiques précoces liés aux mutations de ce gène.