Une étude théorique et empirique des estimateurs de la matrice de variance-covariance pour le choix de portefeuilles
Institution:
Paris 1Disciplines:
Directors:
Abstract EN:
Pas de résumé disponible.
Abstract FR:
L'objectif de ce travail de recherche est d'étudier d'un point de vue théorique et empirique les estimateurs de la matrice des covariances dans le cadre de la gestion de portefeuille. Après une étude détaillée de la littérature traitant du sujet, dans la deuxième partie, nous introduisons des mesures alternatives des tendances d'une distribution plus robustes que les moments traditionnels appelées L-moments, pouvant s'interpréter comme des espérances de quartile pondérés. Nous proposons une approche de sélection des titres à partir de la matrice des corrélations issues des L-moments et appliquons la théorie de la matrice aléatoire afin de discriminer les valeurs propres contenant du bruit par rapport aux autres valeurs propres censées contenir de l'information. Dans la troisième partie, nous introduisons un objectif de diversification dans le paradigme moyenne-variance et proposons une nouvelle classe de stratégies d'investissement profitant d'un large univers d'investissement, et des positons dans le portefeuille moins extrêmes. Nous proposons également une explication théorique à la mauvaise performance des portefeuilles lorsque les poids sont libres. Dans la quatrième partie, nous nous intéressons au biais de représentativité dont sont sujets les agents lorsque ces derniers utilisent des paramètres estimés dans les modèles et décrivons les implications théoriques sur la matrice des covariances échantillonnées. Dans la cinquième partie, nous nous intéressons au modèle de Black-Litterman en proposant une approche permettant de limiter les pertes de l'investisseur lorsque ses vues sur les futures rentabilités s'avèrent totalement ou partiellement erronées.