Présentation de groupes de Galois de pro-p-extensions de corps de nombres
Institution:
Toulouse 3Disciplines:
Directors:
Abstract EN:
Pas de résumé disponible.
Abstract FR:
L'objet de cette thèse est la détermination de nouvelles situations dans lesquelles des invariants algébriques d'un groupe de Galois d'une pro-p-extension de corps de nombres peuvent être estimés. On considère d'abord des groupes de Galois d'extensions à ramification contrôlée au-dessus de la -extension cyclotomique d'un corps de nombres. Par la théorie du corps de classes, on généralise des résultats de Jaulent sur le -rang de l'abélianisé d'un tel groupe, puis on montre que les techniques de Chafarevitch et Koch s'appliquent ici pour obtenir une estimation du nombre de générateurs et une majoration du nombre de relations des groupes considérés. On introduit en particulier un nouveau groupe " de Kummer ", qui contrôle un défaut de principe local-global, et on donne quelques conditions suffisantes pour sa trivialité. La seconde partie a pour objet d'identifier des groupes de Galois qui soient " cléments " : ces groupes, introduits dans ce contexte par Labute, ont une dimension cohomologique inférieure à 2. On généralise des résultats de Wingberg sur les groupes à ramification et décomposition contrôlées, et on exhibe de tels groupes dans le cas de la ramification mixte. Les techniques employées s'appliquent aussi au cas des corps de fonctions. Enfin, on se concentre sur le cas où p=2 au-dessus d'un corps quadratique imaginaire. Après avoir généralisé des résultats de Ferrero et Kida sur les invariants d'Iwasawa au cas de la ramification modérée, on donne dans certains cas une présentation du groupe de Galois de la pro-2-extension S-ramifiée maximale de la -extension cyclotomique du corps de base, en reprenant une méthode introduite par Mizusawa dans le cas non ramifié.