thesis

Résonances du Laplacien sur les fibrés vectoriels homogènes sur des espaces symétriques de rang réel un

Defense date:

June 29, 2021

Edit

Disciplines:

Authors:

Abstract EN:

We study the resonances of the Laplacian acting on the compactly supported sections of a homogeneous vector bundle over a Riemannian symmetric space of the non- compact type. The symmetric space is assumed to have rank-one but the irreducible representation τ of the maximal compact K defining the vector bundle is arbitrary. We determine the resonances. Under the additional assumption that τ occurs in the spherical principal series, we determine the resonance representations. They are all irreducible. We find their Langlands parameters, their wave front sets and determine which of them are unitarizable.

Abstract FR:

On étudie les résonances de l’opérateur de Laplace agissant sur les sections d’un fibré vectoriel homogène sur un espace symétrique Riemannien de type non-compact. On suppose que l’espace symétrique est de rang un, mais la représentation irréductible τ du compact maximal K, qui définit le fibré vectoriel, est quelconque. On détermine alors les résonances. Si on suppose de plus que τ apparaît dans les représentations de la série principale sphérique, on détermine les représentations issues des résonances. Elles sont toutes irréductibles. On trouve leurs paramètres de Langlands, leurs fronts d’onde et lesquelles sont unitarisables.