Sur la théorie de Cramér et sa généralisation aux champs asymptotiquement découplés
Institution:
Paris 11Disciplines:
Directors:
Abstract EN:
The present thesis is a sequel in a series of works on fundamental theory of large deviations. Cramér (1938) showed that the empirical means of a sequence of real independent and identically distributed random variables satisfied a large deviations principle (LDP). And Chernoff (1952) identified the entropy of the LDP with the opposite of convex-transfon of the pressure (s=-p*). Donsker and Varadhan (1966) found a setting which generalises the LDP, from which follows th equality s=-p*. Their formalism was developed in the classical books of Azencott (1980), de Acosta (1985), Deuschel an Stroock (1989) and Dembo and Zeitouni (1993). Following the ideas of Bahadur and Zabell (1979), the present thesis gives a more optimal setting to obtain the equality s=-p*. This work gives a better understanding of the relevant tools in Cramér's theory (subadditivity, convexity, convex-tightness). Ln passing, we give a new short proof of Cramér's original result on the realline. Moreover, we ex tend Cramér's theory to asymptotically decoupled fields which were introduced b Pfister (2002): we relax the independence hypothesis, keeping a pseudo-subadditivity. Eventually our setting generalises Cramér's and Sanov's theories, and the principles of large deviations for Markov chains (Donsker and Varadhan) and Gibbs fields (Comets, Orey, Pelikan, Fbllmer, Ort and Olla).
Abstract FR:
La présente thèse s'inscrit dans une suite de travaux sur la théorie fondamentale des grandes déviations. Cramér (1938) a montré que les moyennes empiriques d'une suite de variables aléatoires réelles indépendantes et de même loi vérifient un principe de grandes déviations (PGD). Et Chernoff (1952) a identifié l'entropie du PGD et l'opposée de la fonction convexe-conjuguée de la pression (s=-p*). Donsker et Varadhan (1966) ont proposé un cadre généralisant l'obtention du PGD, d'où découle l'égalité s=-p*. Leur formalisme a été approfondi dans les ouvrages classiques d'Azencott (1980), de Acosta (1985), Deuschel et Stroock (1989) et Dembo et Zeitouni (1993). Reprenant les idées de Bahadur et Zabell (1979), la présente thèse donne un cadre plus optimal pour l'égalité s=-p*. Ce travail permet de mieux comprendre les outils pertinents pour la théorie de Cramér (sous-additivité, convexité, convexe-tension). Au passage, nous donnons une nouvelle preuve, plus simple, du résultat originel de Cramér sur la droite réelle. D'autre part, nous étendons la théorie de Cramér aux champs asymptotiquement découplés introduits par pfister (2002) : nous relaxons donc l'hypothèse d'indépendance, tout en conservant une forme de sous-additivité. Le cadre finalement obtenu contient les théories de Cramér et de Sanov pour des variables indépendantes, ainsi que les principes de grandes déviations pour les chaînes de Markov (Donsker et Varadhan) et les mesures de Gibbs (Cornets, Orey, Pelikan, Fbllmer, Ort et Olla).