On birational transformations and automorphisms of some hyperkähler manifolds
Institution:
PoitiersDisciplines:
Directors:
Abstract EN:
My thesis work focuses on double EPW sextics, a family of hyperkähler manifolds which, in the general case, are equivalent by deformation to Hilbert's scheme of two points on a K3 surface. In particular I used the link that these manifolds have with Gushel-Mukai varieties, which are Fano varieties in a Grassmannian if their dimension is greater than two, K3 surfaces if their dimension is two.The first chapter contains some reminders of the theory of Pell's equations and lattices, which are fundamental for the study of hyperkähler manifolds. Then I recall the construction which associates a double covering to a sheaf on a normal variety.In the second chapter I discuss hyperkähler manifolds and describe their first properties; I also introduce the first case of hyperkähler manifold that has been studied, the K3 surfaces. This family of surfaces corresponds to the hyperkähler manifolds in dimension two.Furthermore, I briefly present some of the latest results in this field, in particular I define different module spaces of hyperkähler manifolds, and I describe the action of automorphism on the second cohomology group of a hyperkähler manifold.The tools introduced in the previous chapter do not provide a geometrical description of the action of automorphism on the manifold for the case of the Hilbert scheme of points on a general K3 surface. In the third chapter, I therefore introduce a geometrical description up to a certain deformation. This deformation takes into account the structure of Hilbert scheme. To do so, I introduce an isomorphism between a connected component of the module space of manifolds of type K3[n] with a polarization, and the module space of manifolds of the same type with an involution of which the rank of the invariant is one. This is a generalization of a result obtained by Boissière, An. Cattaneo, Markushevich and Sarti in dimension two. The first two parts of this chapter are a joint work with Alberto Cattaneo.In the fourth chapter, I define EPW sextics, using O'Grady's argument, which shows that a double covering of a EPW sextic in the general case is deformation equivalent to the Hilbert square of a K3 surface. Next, I present the Gushel-Mukai varieties, with emphasis on their connection with EPW sextics; this approach was introduced by O'Grady, continued by Iliev and Manivel and systematized by Kuznetsov and Debarre.In the fifth chapter, I use the tools introduced in the fourth chapter in the case where a K3 surface can be associated to a EPW sextic X. In this case I give explicit conditions on the Picard group of the surface for X to be a hyperkähler manifold. This allows to use Torelli's theorem for a K3 surface to demonstrate the existence of some automorphisms on X. I give some bounds on the structure of a subgroup of automorphisms of a sextic EPW under conditions of existence of a fixed point for the action of the group.Still in the case of the existence of a K3 surface associated with a EPW sextic X, I improve the bound obtained previously on the automorphisms of X, by giving an explicit link with the number of conics on the K3 surface. I show that the symplecticity of an automorphism on X depends on the symplecticity of a corresponding automorphism on the surface K3.The sixth chapter is a work in collaboration with Alberto Cattaneo. I study the group of birational automorphisms on Hilbert's scheme of points on a projective surface K3, in the generic case. This generalizes the result obtained in dimension two by Debarre and Macrì. Then I study the cases where there is a birational model where these automorphisms are regular. I describe in a geometrical way some involutions, whose existence has been proved before.
Abstract FR:
Mon travail de thèse porte sur les doubles EPW sextiques, une famille de variétés hyperkähleriennes qui, dans le cas général, sont équivalentes par déformation au schéma de Hilbert de deux points sur une surface K3. Notamment j'ai utilisé le lien que ces variétés ont avec les variétés de Gushel-Mukai, qui sont des variétés de Fano dans une Grassmannienne si leur dimension est plus grande que deux, des surface K3 si la dimension est deux.Le premier chapitre contient quelques rappels de théorie des équations de Pell et des réseaux, qui sont fondamentals pour l’étude des variétés hyperkähleriennes. Ensuite je rappelle la construction qui associe un revêtement double à un faisceau sur une variété normale.Dans le deuxième chapitre j’aborde les variétés hyperkähleriennes et je décris leurs premières propriétés ; j’introduis aussi le premier cas de variété hyperkählerienne qui a été étudiée, les surfaces K3. Cette famille de surfaces correspond aux variétés hyperkähleriennes en dimension deux.Je présente ensuite brièvement certains des derniers résultats dans ce domaine, notamment je définis différents espaces de modules de variétés hyperkähleriennes et je décris l’action d’un automorphisme sur le deuxième groupe de cohomologie d’une variété hyperkähleriennes.Les outils introduits dans le chapitre précédent ne fournissent pas de description géométrique de l'action de l'automorphisme sur la variété, dans le cas où la variété est un schéma de Hilbert de points sur une surface K3. Dans le troisième chapitre, j’introduis donc une description géométrique à une certaine déformation près. Cette déformation prend en compte la structure du schéma de la variété de Hilbert. Pour ce faire, j'introduis un isomorphisme entre une composante connexe de l'espace de modules des variétés de type K3[n] avec une polarization, et l'espace de modules des variétés de même type avec une involution dont le rang de l'invariant est un. Il s’agit d’une généralisation d’un résultat obtenu par Boissière, An. Cattaneo, Markushevich et Sarti en dimension deux. Les deux premières parties de ce chapitre sont un travail en collaboration avec Alberto Cattaneo.Dans le quatrième chapitre, je définis les EPW sextiques, en présentant l'argument de O'Grady, qui montre qu'un double revêtement d'un EPW sextique dans le cas général est une variété de type K3[2]. Ensuite, je présente les variétés Gushel-Mukai, en mettant l'accent sur leur lien avec les EPW sextiques ; cette approche a été introduite par O'Grady, poursuivie par Iliev et Manivel et systématisée par Kuznetsov et Debarre.Dans le cinquième chapitre, j’utilise les outils introduits dans le quatrième chapitre dans le cas où on peut associer une surface K3 à une EPW sextique X. Dans ce cas je donne des conditions explicites sur le groupe de Picard de la surface pour que X soit une variété hyperkählerienne. Cela permet d'utiliser le théorème de Torelli pour une surface K3 pour démontrer l'existence de quelques automorphismes sur X. Je donne des bornes sur la structure d'un sous-groupe d'automorphismes d'une EPW sextique sous conditions d'existence d'un point fixe pour l'action du groupe.Toujours dans le cas d'existence d'une surface K3 associée à une EPW sextique X, j’améliore la borne obtenue précédemment sur les automorphismes de X, en donnant un lien explicite avec le nombre de coniques sur la surface K3. Je montre que la symplecticité d'un automorphisme sur X dépend de la symplecticité d'un automorphisme correspondant sur la surface K3.Le sixième chapitre est un travail en collaboration avec Alberto Cattaneo. J'étudie le groupe d'automorphismes birationels sur le schéma de Hilbert des points sur une surface projective K3, dans le cas générique. Cela généralise le résultat obtenu en dimension deux par Debarre et Macrì. Ensuite j’étudie les cas où il existe un modèle birationel où ces automorphismes sont réguliers. Je décris de façon géométrique quelques involutions dont on avait prouvé l'existence auparavant.