C*-algèbres de Sp(n,1) et K-théorie
Institution:
Université Louis Pasteur (Strasbourg) (1971-2008)Disciplines:
Directors:
Abstract EN:
This thesis is devoted to K-theory for groups C*-algebras, maximal and reduced. We are interested in isomerty groups of quaternionic hyperbolic spaces, Sp(n,1). We describe explicitely the K-theory of the maximal C*-algebra of these groups in terms of some of their unitary irreducible representations, called isolated series. These results are then used to compute the range of the Baum-Connes assembly map, which in this case associates to each representation of a maximal compact subgroup an element of the K-theory namely the index of a Dirac operator acting on the hyperbolic space. Using universality property of these operators, we are then able to compute the index of another operator defined by Wong that is related to the geometric construction by cohomological induction of isolated series. We also completely describe the structure of the maximal C*-algebra of the groups Sp(n,1).
Abstract FR:
Cette thèse est consacrée à la K-théorie des C*-algèbres de groupes, maximales et réduites. Nous nous intéressons plus particulièrement aux groupes d'isométries d'un espace hyperbolique quaternionien, Sp(n,1). Nous donnons une description explicite de la K-théorie de la C*-algèbre maximale de ces groupes en fonction de certaines de leurs représentations unitaires irréductibles, dites séries isolées. Ces résultats servent ensuite à calculer l'image de l'application d'assemblage de Baum-Connes, qui à chaque représentation d'un sous-groupe compact maximal associe (dans notre cas) l'indice en K-théorie d'un opérateur de Dirac sur l'espace hyperbolique. Ce calcul, en utilisant alors des propriétés d'universalité de l'opérateur de Dirac, nous permet de calculer l'indice d'un opérateur défini par Wong, et lié à la construction géométrique (induction cohomologique) des séries isolées. Nous déterminons également la structure de la C*-algèbre maximale des groupes Sp(n,1).