thesis

Schémas volumes finis en mécanique des fluides complexes

Defense date:

Jan. 1, 2010

Edit

Institution:

Aix-Marseille 1

Disciplines:

Directors:

Abstract EN:

This manuscript deals with the development and numerical analysis of finite volume schemes of type discrete duality (DDFV) for the discretization of the Darcy equations in porous heterogeneous anisotropic media and the Stokes equations with variable viscosity. A common feature of these problems, which motivates the use of DDFV schemes, is that their finite volume resolution requires to approximate all the components of the gradient of the solution. The DDFV method consists in discretizing the solution of equations simultaneously on the centers of the control volumes and on the vertices of the mesh. These two sets of unknowns allow to reconstitute a two-dimensional discrete gradient on a large class of 2D meshes, without assuming the “orthogonality” condition required for classical finite volume methods. We first study the discretization of anisotropic elliptic problems with mixed Dirichlet/Fourier boundary conditions. The scheme we propose allows to build the corresponding discrete non-overlapping Schwarz algorithm associated to a decomposition of the domain with Fourier interface conditions, which converges to the solution of the DDFV scheme on the initial domain. Numerical experiments illustrate the theoretical results of error estimates and of the DDFV Schwarz algorithm convergence. We then propose to discretize Stokes equations with a variable viscosity. The corresponding DDFV schemes are generally illposed. To overcome this difficulty, we stabilize the mass conservation equation with different pressure terms. First, we assume that the viscosity is smooth enough. The analysis of the scheme, which gives optimal error estimates, relies on a Korn inequality and on a uniform discrete inf-sup condition using the stabilization term. Secondly, we consider the case where the viscosity is discontinuous. The discontinuities must be taken into account in the scheme to overcome the consistency defect of the numerical fluxes. We need to build new operators with artificial unknowns. The theoretical study becomes more tricky. In all cases, the existence and uniqueness of the discrete solution are proved, as well as optimal error estimates. A first study of the extension of the DDFV schemes to Navier-Stokes equations is presented. A generalization in 3D of the results is given in the case of the Stokes problem with smooth variable viscosity. Numerical experiments illustrate the different error estimates.

Abstract FR:

Le travail de thèse exposé dans ce manuscrit porte sur le développement et l’analyse numérique de schémas volumes finis de type dualité discrète (DDFV) pour la discrétisation des équations de Darcy en milieu poreux hétérogène anisotrope et celle des équations de Stokes avec viscosité variable. Un point commun à ces problèmes, qui motive l’emploi des schémas DDFV, est que leur résolution par volumes finis nécessite d’approcher toutes les composantes du gradient de la solution. Les schémas DDFV consistent à discrétiser la solution de l’équation simultanément aux centres des volumes de contrôle et aux sommets du maillage. Ce double jeu d’inconnues permet de définir naturellement un gradient discret sur des maillages très généraux, ne vérifiant en particulier pas nécessairement la condition d’orthogonalité classique des maillages volumes finis. On étudie tout d’abord la discrétisation du problème de diffusion scalaire anisotrope pour des conditions aux bords mixtes de type Dirichlet/Fourier. Le schéma que nous proposons permet de construire un algorithme de Schwarz discret associé à une décomposition de domaine sans recouvrement avec des conditions de transmission de type Fourier qui converge vers la solution obtenue sans décomposition. Des expériences numériques illustrent les résultats théoriques d’estimation d’erreur et de convergence des algorithmes de Schwarz DDFV. On se propose ensuite de discrétiser des problèmes de Stokes avec une viscosité variable. Les schémas DDFV correspondant sont en général mal posés. Pour y remédier, on stabilise le bilan de masse par différents termes en pression. Dans un premier temps, on suppose la viscosité régulière. L’analyse du schéma, qui conduit à une estimation d’erreur optimale, repose sur une inégalité de Korn discrète et sur une condition inf-sup discrète utilisant le terme de stabilisation en pression. Dans un second temps, on considère le cas où la viscosité est discontinue. Ces discontinuités doivent être prise en compte par le schéma pour surmonter la perte de consistance des contraintes à l’interface. Ceci nécessite la construction de nouveaux opérateurs discrets définis à l’aide des inconnues artificielles. L’étude théorique devient plus compliquée. Dans tous les cas, l’existence et l’unicité de solutions discrètes sont démontrées, ainsi que des estimations d’erreur optimales. Une première étude de l’extension des schémas DDFV des équations de Stokes aux équations de Navier-Stokes est également présentée. Une généralisation des résultats pour le problème de Stokes avec une viscosité variable et régulière est donnée dans le cas tridimensionnel. Des tests numériques illustrent les différentes estimations d’erreur.