Sur la géométrie des espaces de modules d'instantons de variétés à forme d'intersection définie négative
Institution:
Aix-Marseille 1Disciplines:
Directors:
Abstract EN:
Pas de résumé disponible.
Abstract FR:
L’´etude d’espaces de modules d’instantons a conduit `a des r´esultats r´evolutionnaires dans la g´eom´etrie des vari´et´es en dimension quatre, puisqu’ils constituent la base de la construction des invariants polynomiaux de Donaldson. Cette construction ´echoue lorsque la vari´et´e de base est `a forme d’intersection d´efinie n´egative, car dans ce cas les espaces de modules contiennent des solutions r´eductibles - points singuliers en g´en´eral. Cette th`ese est donc consacr´ee `a l’´etude de la g´eom´etrie des espaces de modules d’instantons pour les vari´et´es `a forme d’intersections d´efinie n´egative. Dans une premi`ere partie la topologie et la g´eom´etrie Riemannienne sont d´ecrites autour du lieu r´eductible. Dans la deuxi`eme partie, des exemples explicites sont calcul´es pour toutes les surfaces complexes minimales de la classe VII `a deuxi`eme nombre de Betti un et par rapport `a toute m´etrique de Gauduchon possible.