thesis

Régularité des équations de Cauchy-Riemann et Cauchy-Riemann tangentielles sur les domaines convexes de type fini de Cn

Defense date:

Jan. 1, 2003

Edit

Institution:

Lille 1

Disciplines:

Abstract EN:

Pas de résumé disponible.

Abstract FR:

Soit D un domaine de Cn , n>1, borné, convexe et de type fini m. Pour q=1,. . . ,n-1, nous construisons un opérateur T*q tel que pour toute forme ∫ de Ck0,q(D)̄, ð-̄fermée, T*q∫ soit de régularité Ck+1/m sur D ̄et satisfasse ðT̄*q∫ = ∫ et [[T*q∫]]k+1/m<_ck[[∫]]k, ck ne dépendant pas de ∫. Ce résultat étend des travaux de I. Lieb et R. M. Range sur les domaines strictement pseudoconvexe. T*q est un opérateur intégral basé sur la fonction de support de K. Diederich et J. E. Fornaess. Nous estimons les dérivées de T*q∫ avec les bases -extrémales de McNeal dont nous améliorons certaines propriétés lors de dérivations dans la direction normale au bord. Ensuite, pour q=1,. . . , n-1, nous construisons un opérateur Tbq tel que si [∫] est la classe d'équivalence d'une (0,q)-forme ∫ de régularité Ck au voisinage du bord de D, alors Tbq[∫] est de régularité Ck1/m, [[Tbq[∫]]]k+1/m<_ck[[[∫]]]k et, sous les conditions usuelles lorsque q=n-1, [∫] = ðb̄Tq[∫]+ Tbq+1ðb̄[∫]. Cette construction généralise des résultats G. M. Henkin sur les domaines strictement pseudoconvexes.