Dynamique des Fluides Relativistes : Théorie et Approximation Numérique
Institution:
Paris 6Disciplines:
Directors:
Abstract EN:
Nous nous intéressons à des modèles d'évolution de fluides compressibles relativistes dans un espace-temps courbe, lequel est soit fixé a priori, soit déterminé par couplage avec les équations d'Einstein de la relativité générale. Sous une hypothèse de symétrie plane ou radiale, nous formulons des équations aux dérivées partielles de type hyperbolique nonlinéaire à une dimension d'espace, et nous étudions l'existence et la stabilité de certaines classes de solutions pertinentes du point de vue physique. Nous développons une méthode géometrique de volumes finis pour l'approximation numérique de ces problèmes de relativité numérique, et étudions l'écroulement gravitationnel d'un fluide compressible autogravitant (c'est-à-dire, soumis à son propre champs de gravitation) et la formation de surfaces piégées au cours de l'evolution donnée par les équations d'Einstein-Euler.
Abstract FR:
Pas de résumé disponible.