thesis

Détection d’évènements anormaux dans les gros volumes de données d’utilisation issues des hélicoptères

Defense date:

Sept. 30, 2020

Edit

Institution:

Lyon

Disciplines:

Abstract EN:

This thesis addresses the topic of the normality of the helicopter component systems functioning through the exploitation of the usage data coming from the HUMS (Health and Usage Monitoring System) for the maintenance. Helicopters are complex systems and are subject to strict regulatory requirements imposed by the authorities in charge of flight safety. The analysis of monitoring data is therefore a preferred means of improving helicopter maintenance. In addition, the data produced by the HUMS system are an indispensable resource for assessing the health of the systems after each flight. The data collected are numerous and the complexity of the different systems makes it difficult to analyze them on a case-by-case basis.The work of this thesis deals mainly with the issues related to the utilization of multivariate series for the visualization and the implementation of anomaly detection tools within Airbus Helicopters.We have developed different approaches to catch in the flight data a relative normality for a given system.A work on the visualization of time series has been developed to identify the patterns representing the normality of a system's operation.Based on this approach, we have developed a "virtual sensor" allowing to estimate the values of a real sensor from a set of flight parameters in order to detect abnormal events when the values of these two sensors tend to diverge.

Abstract FR:

Cette thèse aborde le sujet de la normalité de fonctionnement des systèmes composants l’hélicoptère à travers l’exploitation des données d’utilisation issues du système de surveillances du HUMS (Health and Usage Monitoring System) pour la maintenance. Les hélicoptères sont des systèmes complexes et sont soumis à des exigences réglementaires strictes imposées par les autorités concernées par la sécurité en vol. L’analyse des données de surveillance est par conséquent un moyen privilégié pour améliorer la maintenance des hélicoptères. De plus, les données produites par le système HUMS représentent une ressource indispensable pour se rendre compte de l’état de santé des systèmes après chaque vol. Les données collectées sont nombreuses et la complexité des différents systèmes permettent difficilement des analyses cas par cas. Les travaux de cette thèse abordent principalement les problématiques liées à l’exploitation des séries multivariées pour la visualisation et la mise en place d’outil de détection d’anomalie au sein d’Airbus Helicopters. Nous avons développé différentes approches pour permettre de capter dans les données de vol une forme de normalité, relative à un système donné. Un travail sur la visualisation des séries temporelles a été développé pour identifier, avec un minimum d’apriori, les patterns représentants la normalité de fonctionnement d’un système. En se basant sur cette approche, nous avons développé « un capteur virtuel » permettant d’estimer les valeurs d’un capteur réel à partir d’un ensemble de paramètres de vol afin de détecter des évènements anormaux lorsque les valeurs de ces deux capteurs tendent à diverger.