thesis

Spécification d’un mécanisme de construction automatique de topologies et d'adressage permettant la gestion dynamique des réseaux de capteurs sans fil linéaires

Defense date:

Jan. 17, 2018

Edit

Disciplines:

Directors:

Abstract EN:

Linear wireless sensor network (LWSN) are a sub-case of wireless sensor network where sensor nodes are roughly deployed through multiple long lines with branches. LWSN are used to monitor infrastructures such as roads, pipelines, and naturals entities such as rivers.Classical solutions of topology construction and addressing are inefficient on LWSN . Indeed, with initials networks parameters such as the maximum number of children per node (Cm), the maximum number of children routers per node (Rm), and the maximum tree depth, a solution like ZigBee causes a waste of available address space of network nodes and limit the depth of the addressable tree to 15 hops. Other solutions proposed for LWSN use a cluster-tree organisation and are based on initial network parameters such as the maximum number of children clusters per cluster. In addition, these solutions require a lot of manual intervention on different sensor nodes and do not allow adaptation for a network extension (addition of a set of new sensor nodes). In this thesis, we propose protocols to allow the automatic construction of topologies, the addressing and the data routing for linear wireless sensor networks. Our contribution also provides mechanisms for dynamic management of LWSN (addition of new nodes, addresses reallocation, and data routing to multiple sink nodes). Our different protocols are evaluated using Castalia/Omnet++ simulator. Results of our simulations show that our protocols allow a construction of connected LWSN with very few orphan nodes and without depth limitations. We also show that our contribution allows to add many new nodes on different LWSN, and adapts to the deployment of multiple sinks to improve the ratio and the latency of data delivery packets.

Abstract FR:

Les réseaux de capteurs sans fils linéaires (RdCSL) sont un cas particulier de réseaux de capteurs sans fils où les nœuds de capteurs sont déployés le long de multiples lignes. les RdCSL sont utilisés pour la surveillance des infrastructures routières, ferroviaires, des conduites de gaz, d’eau, de pétrole et de cours d’eau. Les solutions classiques de formation de topologie et d’adressage proposées ne sont pas adaptées à l’environnement des RdCSFL. En effet les paramètres initiaux utilisés par ces protocoles tels que le nombre maximum de nœuds fils (Cm), nombre maximum de nœuds routeurs fils Rm, profondeur maximum de l’arbre (Lm), occasionnent un gaspillage de l’espace d’adressage disponible pour les nœuds et limitent la profondeur de l’arbre adressable (15 sauts pour ZigBee). D’autres solutions adaptées pour les RdCSFL utilisent une organisation en cluster des nœuds du réseau et sont basées elles aussi sur des paramètres fixés à l’avance tels quel le nombre maximum de cluster fils par cluster. De plus, ces solutions requièrent beaucoup d’interventions manuelles sur les nœuds de capteurs (choix des chefs de cluster par exemple) et ne favorisent pas une adaptation face aux changements du RdCSL tels que l’ajout d’un ensemble de nœuds de capteurs. Dans cette thèse, nous proposons donc des protocoles permettant la construction automatique de topologies logiques, l’adressage et le routage pour des réseaux de capteurs sans fil linéaires. Nos protocoles fournissent aussi des mécanismes de gestion dynamique d’un RdSFL avec l’ajout de nouveaux nœuds, la réallocation d’adresses pour les nœuds en cas d’épuisement de blocs d’adresses et la gestion du routage vers plusieurs puits du réseau. Nos différents protocoles sont évalués grâce au simulateur Castalia/Omnet++. Les résultats de nos simulations montrent que nos protocoles permettent de construire un RdCSFL connecté avec peu de nœuds orphelins (nœuds sans adresses logiques) et sans limitations de profondeur. Nous montrons aussi, grâce à nos simulations, que nos contributions permettent d’ajouter un grand nombres de nœuds à un RdCSFL existant de n’importe quelle taille et s’adaptent au déploiement de plusieurs puits et au routage multi-puits et permettent d’améliorer le ratio et la latence de paquets livrés dans les RdCSFL.