thesis

Familles de symboles modulaires et fonctions L p-adiques

Defense date:

Jan. 1, 1998

Edit

Disciplines:

Authors:

Abstract EN:

Pas de résumé disponible.

Abstract FR:

Depuis les travaux de manin vers 1970, on connait le lien entre les coefficients de fourier d'une forme modulaire parabolique f de poids k et ses periodes p(x,r,f) = #i##x f(z)z#rdz, pour 0 r k 2 entier et x rationnel. On sait aussi que pour une forme nouvelle f, on peut construire une fonction l p-adique liee aux valeurs speciales l#f(r + 1,) pour un caractere de dirichlet dont le conducteur est le denominateur de x. L'objectif de cette these est de montrer l'existence de series de fourier universelles f#x#,#r#,#j independantes de f et qui representent la forme modulaire f en termes du produit scalaire de petersson de niveau fixe (en utilisant des convolutions de rankin et des series d'eisenstein). De plus l'ecriture explicite de ces fonctions f#x#,#r#,#j permet d'etablir que leurs coefficients de fourier sont des nombres algebriques aux denominateurs bornes (lorsque le denominateur de x est une puissance d'un nombre premier), c'est-a-dire a un nombre entier pres fixe, des entiers algebriques. L'utilisation de ce resultat nous permet enfin de construire des mesures et des fonctions l p-adiques dans le troisieme chapitre.