thesis

Propriétés des singularités des variétés algébriques réelles

Defense date:

Jan. 1, 2008

Edit

Institution:

Nice

Disciplines:

Authors:

Abstract EN:

Section 2 explains a subdivision procedure triangulating an algebraic plane curve. The mathematical tools are the topological degree, alias Gauss's application, the representation of polynomials in the Bernstein basis, all of it wrapped up in a subdivision very fast and certified subdivision method. Section 3 presents a quantitative theory for measuring transversality to a semi-algebraic map (not necessarily smooth). Stem from it: A quantitative version of Thom-Mather's topological triviality theorem, A ``metrically stable'' version of the local conic structure theorem and of the existence of a ``Milnor tube'' around strata. An triangulation algorithm based on Voronoi partitions (not completely implementable because the effective estimation of transversality is not completely detailed)Section 4 presents a bound on the generic number of connected components in an affine section of a real analytic germ in terms of the multiplicity and of the dimension of the ambient space. These two parameters are not always enough to bound the number of connected components. The result is thus proved under some conditions which are shown to be minimal.

Abstract FR:

La section 2 explique une procédure de subdivision triangulant une courbe algébrique réelle plane. Les outils mathématiques sont le degré topologique, alias l'application de Gauss, ainsi que la représentation des polynômes dans la base de Bernstein, le tout dans une méthode de subdivision très rapide et certifiée. La section 3 présente une théorie de la mesure de la transversalité à une application semi-algébrique non nécessairement lisse. Il en découle: une version quantitative du théorème de trivialité topologique de Thom-Mather, une version ``métriquement stable'' du théorème de structure conique local et de l'existence d'un ``tube de Milnor'' autour des strates. Un algorithme de triangulation utilisant des partitions de Voronoi (sa mise en place n'est pas complète car l'estimation effective de la transversalité n'est pas complètement traité)La section 4 présente une borne sur le nombre générique de composantes connexes dans une section d'un germe analytique réel par un espace affine en fonction de la multiplicité et de la dimension de l'espace. Ces deux paramètres ne suffisent pas toujours à borner le nombre de composantes connexes. Le résultat est donc prouvé sous certaines conditions, dont on prouve la minimalité.