thesis

Modules des opérateurs différentiels d'ordre trois et la géométrie conforme

Defense date:

Jan. 1, 2001

Edit

Institution:

Aix-Marseille 1

Disciplines:

Directors:

Abstract EN:

Pas de résumé disponible.

Abstract FR:

Dans cette thèse nous étudions l'espace D3 des opérateurs différentiels d'ordre trois sur une variété lisse M. Cet espace est considéré comme module sur le groupe Diff (M) des difféomorphismes de M et sur l'algèbre de Lie Vect (M) des champs de vecteurs sur la variété M. Pour définir la structure de modules sur l'espace D3, on considère respectivement les arguments des opérateurs différentiels et leurs images comme des densités tensoriels de degrés arbitraires [lamda] et [mu]. De nombreuses études ont été faites pour les opérateurs différentiels dans le cas projectif. Nous nous plaçons dans le cas conforme en supposant la variété munie d'une structure conformément plate et donnons la classification complète de ces modules à l'ordre k ≥ 3. Ce travail a fait l'objet d'un article qui a été publié au journal Geometry and physics 37(2001)251 - 261. Il s'en suit une application de cette étude aux problèmes concrets de la quantification conformément équivariante. Il n'ya pas de formule explicite pour la quantification conformément équivariante à l'ordre k [> ou =] 4. Dans cette thèse nous établissons cette formule pour les hamiltoniens de degré trois. Nous proposons également la quantification invariante pour une variété pseudo-riemannienne quelconque non nécessairement conformément plate. Ce travail a aussi fait l'objet d'un article (prépint) qui sera bientôt soumis à la publication.