Contributions à la cohomologie étale des schémas et des log-schémas
Institution:
Paris 11Disciplines:
Directors:
Abstract EN:
This work consists of two independent parts. The first one (chaps. I through III) deals with logarithmic geometry. In chap. I we define the logarithmic fundamental group of an fs log scheme and in the proper and log smooth case over the spectrum of a henselian dvr we prove that it satisfies a specialization theorem à la Grothendieck. We then consider a standard logarithmic point s of characteristic p. In chap. II we show that if X is an fs log scheme, separated and of finite type over s, the l-adic Kummer etale cohomology (l different from p) of the log geometric fiber of X finitely generated and endowed with a quasi-unipotent action of the logarithmic inertia, and we study the exponents. In chap. III, for k finite with q elements we define, à la Rapoport, the l-adic Kummer etale semi-simple zeta function of X. We prove it is rational and independent of l. In the proper, log smooth, vertical, Cartier type case we interpret it in terms of log crystalline cohomology and describe its zeroes and poles on the p-adic annuli of radius an integral power of q. . .
Abstract FR:
Ce travail comprend deux parties indépendantes. La première (chap. I à III) porte sur la géométrie logarithmique. Au chap. I on définit le groupe fondamental logarithmique d'un log schéma fs, et l'on prouve pour celui-ci un théorème de spécialisation à la Grothendieck dans le cas propre et log lisse sur un trait hensélien. On se place ensuite sur un point logarithmique standard s de caractèristique p. Au chap. II, on montre que, si X est un log schéma fs séparé et de type fini sur s, la cohomologie Kummer étale l-adique (l différent de p) de la fibre log géométrique de X est de type fini et munie d'une action quasi-unipotente de l'inertie logarithmique; on étudie les exposants. Au chap. III, pour s = Spec(k), k fini de cardinal q, on définit à la Rapoport la fonction zêta semi-simple Kummer étale l-adique de X. On prouve sa rationalité et son indépendance en l. Dans le cas propre log lisse vertical de Cartier, on en donne une interprétation log cristalline, et l'on décrit ses zéros et ses pôles sur les couronnes p-adiques de rayon une puissance entière de q. . .