thesis

Reseaux de neurones et optimisation combinatoire

Defense date:

Jan. 1, 1994

Edit

Institution:

Paris 5

Disciplines:

Directors:

Abstract EN:

Pas de résumé disponible.

Abstract FR:

Les problemes d'optimisation combinatoire ont des donnees assez structurees qui conviennent au traitement d'une architecture neuronale. Ces problemes qui appartiennent en general a la classe np-complet, necessitent une grande puissance de calcul. L'objectif de ce travail est d'appliquer le modele de reseau de neurones aleatoires aux problemes d'optimisation combinatoire. L'application du reseau neuronal aleatoire de gelenbe, a un probleme d'optimisation combinatoire, est caracterisee par l'evolution des entrees externes, qui correspondent au gradient de la fonction objective, en contradiction avec les autres methodes neuronales ou les entrees sont en general constantes. Deux alternatives de resolution sont proposees : l'approche gradient, application de l'algorithme du gradient sur la fonction et l'approche dynamique, introduction du gradient de la fonction aux equations dynamiques qui sont liees au probleme considere. Nous avons resolu un probleme classique d'optimisation combinatoire, le probleme du voyageur de commerce, et un probleme de satisfaction des contraintes, le probleme de reines non attaquantes. De plus nous avons propose la solution pour d'autres problemes. Le reseau neuronal aleatoire applique au probleme du voyageur de commerce a ete evalue et compare avec les autres methodes connexionnistes. Les resultats obtenus sont assez satisfaisants, de qualite similaire (ou meme meilleure) a ceux obtenus par d'autres methodes. Le probleme de reines a ete resolu par deux modelisations. La premiere consiste a resoudre directement ce probleme, alors que dans la seconde on considere le probleme des reines comme un probleme du stable maximal. Quelque soit la methode retenue, toutes les solutions possibles, ou presque, pour ce probleme ont ete obtenues.