thesis

Optimization Algorithms for Clique Problems

Defense date:

June 29, 2017

Edit

Institution:

Angers

Disciplines:

Authors:

Directors:

Abstract EN:

This thesis considers four clique problems: the maximum vertex weight clique problem (MVWCP), the maximum s-plex problem (MsPlex), the maximum balanced biclique problem (MBBP) and the clique partitioning problem (CPP). The first three are generalization and relaxation of the classic maximum clique problem (MCP), while the last problem belongs to a clique grouping problem. These combinatorial problems have numerous practical applications. Given that they all belong to the NP-Hard family, it is computationally difficult to solve them in the general case. For this reason, this thesis is devoted to develop effective algorithms to tackle these challenging problems. Specifically, we propose two restart tabu search algorithms based on a generalized PUSH operator for MVWCP, a frequency driven local search algorithms for MsPlex, a graph reduction based tabu search as well as effective exact branch and bound algorithms for MBBP and lastly, a three phase local search algorithm for CPP. In addition to the design of efficient move operators for local search algorithms, we also integrate components like graph reduction or upper bound propagation in order to deal deal with very large real-life networks. The experimental tests on a wide range of instances show that our algorithms compete favorably with the main state-of-the-art algorithms.

Abstract FR:

Cette thèse présente des algorithmes de résolution de quatre problèmes de clique : clique de poids maximum (MVWCP), s-plex maximum (MsPlex), clique maximum équilibrée dans un graphe biparti (MBBP) et clique partition (CPP). Les trois premiers problèmes sont des généralisations ou relaxations du problème de la clique maximum, tandis que le dernier est un problème de couverture. Ces problèmes, ayant de nombreuses applications pratiques, sont NP-difficiles, rendant leur résolution ardue dans le cas général. Nous présentons ici des algorithmes de recherche locale, principalement basés sur la recherche tabou, permettant de traiter efficacement ces problèmes ; chacun de ces algorithmes emploie des composants originaux et spécifiquement adaptés aux problèmes traités, comme de nouveaux opérateurs ou mécanismes perturbatifs. Nous y intégrons également des stratégies telles que la réduction de graphe ou la propagation afin de traiter des réseaux de plus grande taille. Des expérimentations basées sur des jeux d’instances nombreux et variés permettent de montrer la compétitivité de nos algorithmes en comparaison avec les autres stratégies existantes.