thesis

Analyse de forme des objets biologiques : représentation, classification et suivi temporel

Defense date:

Jan. 1, 2003

Edit

Institution:

Reims

Disciplines:

Directors:

Abstract EN:

N biology, the relationship between shape, a major element in computer vision, and function has been emphasized since a long time. This thesis proposes a processing line leading to unsupervised shape classification, deformation tracking and supervised classification of whole population of objects. We first propose a contribution to unsupervised segmentation based on a fuzzy classification method and two semi-automatic methods founded on fuzzy connectedness and watersheds. Next, we perform a study on several shape descriptors including primitives and anti-primitives, contour, silhouete and multi-scale curvature. After shape matching, the descriptors are submitted to statistical analysis to highlight the modes of variations within the samples. The obtained statistical model is the basis of the proposed applications.

Abstract FR:

En biologie, les relations entre la forme, élément majeur de la vision par ordinateur, et la fonction ont depuis longtemps été mises en évidence. Cette thèse présente une chaîne de traitement permettant d'aboutir à la classification non supervisée de formes, au suivi de déformation et à la classification supervisée de populations d'objets. Nous proposons dans un premier temps une contribution en segmentation automatique basée sur une procédure de classification floue, ainsi que deux méthodes semi-automatiques s'appuyant sur la connectivité floue et les lignes de partage des eaux. Nous menons ensuite une étude sur plusieurs descripteurs de la forme des objets utilisant des primitives et des anti-primitives, le contour , la silhouette et la courbure multi-échelle. Après mise en correspondance, les descripteurs sont soumis à une analyse statistique pour mettre en évidence les modes de variations au sein des échantillons. Le modèle statistique obtenu est à la base des applications proposées.