Équations hyperboliques non-linéaires sur les variétés : méthodes de volumes finis et méthodes spectrales
Institution:
Paris 6Disciplines:
Directors:
Abstract EN:
Pas de résumé disponible.
Abstract FR:
La première partie de ce travail de thèse est consacrée à l'étude de la méthode des volumes finis pour les lois de conservation hyperboliques sur une variété riemannienne ou lorentzienne. On prouve d'abord des estimations fines de la variation totale pour les lois de conservation scalaires sur une variété riemannienne. Ensuite, on établit la convergence forte des méthodes de volumes finis du premier ordre pour ces équations dans le cas riemannien. Finalement, on étend ce résultat de convergence à des variétés lorentziennes. La deuxième partie porte sur l'application d'une méthode pseudo-spectrale de Fourier pour résoudre numériquement des équations hyperboliques non-linéaires singulières issues d'un mo\-dè\-le en théorie de la relativité générale: les espaces-temps de Gowdy. Notre approche nous permet d'étudier le comportement des solutions de ces équations sur la singularité. Puis, on déduit des estimations de régularité fines pour un modèle linéarisé des équations d'Einstein dans les espaces-temps de Gowdy, moyennant l'utilisation d'espaces de régularité fractionnaire.